Nixie Tube Clock Design

Ryan Michael Kissinger, BSME

ABSTRACT

This paper proposes a methodology to design, program, and manufacture

a working Nixie Tube alarm clock, comprehensively describing the design

process, necessary parts, and assembly methods used to develop the device.

READ THE DISCLAIMER IN APPENDIX F BEFORE PROCEEDING.

0. Introduction

After a long hiatus due to the efliciency of
high-powered LED displays, Nixie Tubes
have reemerged mn public eye as a popular
device for tinkerers, engineers, and hobbyists.
This revolution is wrought not only by their
historical significance to early computers, but
also by their eye-catching neon aesthetic-- their
glass bulbs housing radiant filaments of
numbers, decimals, letters, and characters,
their planes of twisted wires illuminating with
a luminous neon glow

The history of Nixie Tubes dates back to the
1950s and 1960s, an era long before the
existence of low-powered LEDs, employed in
industrial and scientific automated equipment.
After its conception by a German-American
hobbyist, and later commercialized for public
use, the Nixie Tube has played pivotal roles in
American technological history, from moon
landings to Wall Street [1].

Through the hindsight of our privilege by
modern technology, it can be easy to regard
the Nixie Tube as an overcomplicated
solution to a simplistic problem. But before
low-power, efhcient, light-emitting-diode
displays came 1into significance, the Nixie
Tube was a substantial breakthrough at the
time. The Numerical Indicator Experimental-
1 tube, shortened to the nickname “Nixie” for
understandable reasons, contains a set of
diodes 1n a glass tube containing neon gas.
The numerals are cathodes aligned n parallel

planes, and when a significant voltage
difference 1s observed, the surrounding neon
gas 1s 1onized, affording Nixie tubes their
mfamous glowing effect [2].

To engmeers, hobbyists, electricians, and
artists, the Nixie Tube’s importance has been
reborn into culture through the pleasure of its
aesthetic. In modern pop culture, Nixie
devices have emerged n television and
movies. My personal inspiration for this
device arises from the Japanese time travel
anime Steins;Gate, in which the main
character Okabe Rintarou employs the use of
a 8-bulb, IN-12 Nixie device called a
“Divergence Meter” to numerically identify
the reality that he 1s currently on. This project
1s the amalgamation of my passions for
mechanical, electrical, and computer science
engineering; a love letter to the major that has
captivated me since 1 first began my
educational journey.

This paper will systematically cover my
procedure of designing a Nixie tube clock,
exploring the following:

1. Imitial considerations/parts selection;
Manufacturing drawings;

o

3. Circuit schematics;

4. Programming code;
5. Assembly and design;
6. Additional features.

1. Initial Considerations and Bill of Materials

Mechanical Components

Tubes

Component Description Qty Example Source
M2.5 Standoff Set, 150- | 6mm, 10mm, 15mm, 20mm size; 1 Amazon (Sutemribor)
pc Male-Female and Male-Male. R —
Craft Wood Beam™ 4 x 37 x 247 panels. 1 Online or craft store
Craft Wood Plane” Minimum area 5.5” x 2.5”. 1 Online or craft store
Wood Glue - 1 Online or craft store
Electrical Components**
Component Description Qty Example Source
SN74HC595D Bit-Shift Register, Surface-Mount. 3
Also known as K155U/11 or .
AR
R125ID1 SN74155N: Binary-to-BCD driver, | °
ESP-32 HUZZAH Adafruit ESP32 breakout. 1 Adafruit
2x8 16-Pin Header Pin header for breakout. 1
: i Pin header for breakout. Purchase . Amazon, Mouser,
[x3 3-Pin Header m bulk by buying a pack. Pack DigiKey
1x6 6-Pin Header Pin h'eader for brea'kout. Purchase Pack Amazo'n,' Mouser,
m bulk by buying a pack. DigiKey
R0O80S5 50 Q 50 Q resistor. 3 Mouser, DigiKey
35211220KFT 20K Q 20K 0 res‘“:r for high-voltage 6 Mouser, DigiKey
ower.

L7805CV 12V to 5V step-down converter. 1 Mouser, DigiKey
C0805 0.1uF 0.1uF 50V decoupling capacitor. 5 Mouser, DigiKey
C0805 10uF 10pF 50V decoupling capacitor. 3 Mouser, DigiKey

2.56mm x .2 Screw Screw te.rmlnal for high-voltage wire 1 Mouser, DigiKey

Terminal connection from step-up converter.

Female DC Plug 12V DC plug adaptor. 1 Amazon (UXCELL)
DC Power Cable 12V wall-plug power cable. 1 Amazon
NCH()IO(,)HV DC 12V to 200V step-up converter. 1 Amazon
Step-Up Converter
OPCS IN-14 Nixie Pack of 6 Nixie tubes. 1 Amazon

* Displayed in inches for convenience, since standard sizes are often sold with imperial dimensions. This project uses the SI metric standard.

** Make sure to purchase a wealth of extra components, as small components such as thick-film resistors and capacitors are incredibly easy to lose.

Table 1.1 | Bill of Materials for creating a Nixie tube clock.

The following table covers the components necessary to make a single Nixie Tube clock. Further
description will highlight the purpose behind the selection of all specialized components.

https://www.amazon.com/gp/product/B075K3QBMX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1

1.1. SN74HC595 Bit-Shift Register

The SN74HC595 1s an 8-bit, serial-in, parallel
shift-out register that holds the 4-bit binary

values representing the digit on the Nixie tube.
This device 1s capable of transmitting a
numerical input over a serial connection nto
a physical manifestation of the represented
number, opening and closing eight gates that
directly represent the bits of the binary
number. This device will be employed n

conjunction with the K155ID1.

Q1 [1]
Q2 [2]
Q3 [3]
Q4[4
Q5 [5 |
Q6 [6 |
Q7 [7]
GND |8 |

[16] Ve
[15] Qo
[14] DS
13] OE
12] sTCP
11] SHCP
[10] MR
9] ars

O

Figure 1.1 | Pinouts for the SN74HC595, adapted
from Nexperia datasheet [3].

Pin Description
Vee Power pin
GND Ground
DS / Senal Serial input.
OE Output enable
(active when LOW)
STCP / RCLK Storage register
clock pin
SHCP / SRCLK | Shift register clock
pin
MR Master reset (active
when LOW)
SRCLR Shift register clear
Qa- QH Bits 1-8, LSB to
MSB
Qu’ Daisy chain out (to
next Serial connec.)

Table 1.2 | Pinouts for the SN74HC595.

3

What's important to observe 1s that the bits
transferred into the shift register through
Serial first enter the Q. register, then are
shifted
Therefore, when we interface with this device,
the LSB will end up being the last shifted
value, housed 1n Q., and conversely, the MSB

procedurally towards the Qu.

will house the first shifted value (in Qu). Any
further bit shifts will result in the Qu bit being
shifted to the next shift register, mnto its Qa
space.

Our end goal 1s to drive the nixie tubes. The
K155ID5 chip, which will be discussed next,
1s the component that allows the 4-bit binary
number to be converted mto a signal that
drives one number at a time. By daisy-chaining
three of the SN74HC595 chips together, we
have six available 4-bit binary numbers to
drive our six nixie tubes. We use the Serial,
RCILK and SRCIK to drive this process.

The STCP pin 1s the storage register clock
pin. When it 1s low, the device "starts listening"
for binary values to be mtroduced through the
Serial line. When we change it to high, the
device stops listening, then shifts the input data
to the output line.

The SHCP pin 1s the shift register clock pin.
The most important characteristic of this pin
1s 1ts behavior on a rising edge transition —
when it changes from low to high, all the values
i our shift register are shifted by one place.
Q. 15 shifted to Qs, Qs to Q¢, and so on. The
value mm Qu 1s shifted through the Q' pin,
which connects to the next register's Serial
line, entering it into its Q. position.

The Serial pin holds the data transferred from
the microcontroller: a single bit, zero or one,
low or high. The value n this register 1s shifted
i when the SHCP pin undergoes a rising edge
transition.

SHCP

DS

STCP

Q7

Q7s

mna556

Figure 1.2 | Timing diagram for the SN74HC595, adapted from the Nexperia datasheet [3].

We observe this interaction in the above timing diagram table,
adapted from a Nexperia datasheet [3]. The SHCP and STCP line
share a relationship of one-half phase off from each other, as their
behavior 1s contingent upon the rising-edge transition. When the DS
(or Sernal) pin receives a high signal, the SHCP pin receives a rising-
edge signal from low to high, and the SHCP pin is low, the device
processes the signal from the DS line and places it in the first
register (Qs). When the STCP line transitions to high, it transitions
the input data to the output line and “stops listening” for new values.

The mterplay between the STCP and SHCP line continues; each
rising-edge transition of the SHCP pin drives the original signal from
the DS pin one step further along the registers. Eventually, this signal
reaches the Q7s or Qu’ line, and 1f the Qu’ line 1s daisy-chained to
the next SN74HC595 DS line, that value 1s placed n its first register
position.

1.2. K155ID1 Binary-to-BCD Chip

The K155ID1 (also known as the K155U/14
or the SN74155N) is a binary-to-BCD driver
that converts our 4-bit nybble' of binary
numbers mnto a signal for the correct digit on
our Nixie tubes.

We observe on the pinout schematic that the
values 0-9 are represented. For this particular
chip (that only represents values 0-9), any
value greater than 9 (or 0x0110, binary ten)
results in no output. For convenience, we can
use these values as "dead outputs” when we
don't want to display a number’.

A specialized feature about this chip 1s that it
1s directly mtended for use with high-voltage
Nixie tubes (after all, the documentation
contains a Russian document from the cold
war era). The Logic Diagram shows us that
Zener diodes and PNP BJT logic is present in
the device. Since BJT's are present, the signal
obtained
segregated from the high-voltage connection

from our microcontroller 1is
to the Nixie tubes running i excess of 200
volts. The segregation of these two voltage
lines 1deally prohibits corruption of the
STM32 microcontroller, which runs on a
standard input of 5 volts, which 1s exactly the
same as the voltage provided over a Serial line.

Figure 2.3 displays the pinouts of the
K155ID1 chip for quick reference. The pins
marked A, B, C, and D represent the four
mput bytes. According to the logic of Table
2.3, the 4-bit input corresponds to the
outputs

output lines, numbered 0 through 9, are

numerical displayed. These ten
directly connected to the cathode wires of the
Nixie Tube. The Vec line allows the bipolar
junction transistors in the integrated circuit to

“switch” between mputs.

" A “nybble” is four bits, or half a byte.

Cn

Binary

S5
O

C

—

Output

0x0000

(@)

0x0001

0x0010

0x0011

0x0100

0x0101

0x0110

0x0111

0x1000

0x1001

i Nl Busd fa i Busd Baed Nl Nl Nl Il [@)

[l nl ol el el u o a1 - -

OO J|OO|O| W |IN|

ver Ra

3

ge)

0x1010

0x1011

0x1100

0x1101

0x1110

jusifan) gand gauh Jus) @) Ruslparh Fonl Runll il N el Nl enl Rl el w |

janianl Naud ol Hu

janl Wunl Nunll as us

O0x1111

H

H

H

ndl Wl ol Nonll e ol Wl B e o n B sl Wonll e ol Mo e vl Won Rl Nl B -

Table 1.3 | Binary input vs. output for the K1551D1
chip, adapted from the National Semiconductor
Corp. datasheet [4].

O > o o
RIERRIEE

<
Q
Q

N W

N

[16] 0
[15] 1
[14] 5
[13] 4
[12] GND
[11] 6
[10] 7
(9] 3

Figure 1.3 | Pinouts of the K155ID1 chip.

1.3. Using Both ICs Together
Properly interfacing with the Nixie tubes CURRENT TIME

requires us to understand how the two ICs

10 :48:59

Although further programming description
will take place mm Section 4, Figure 2.4 / l j \l \' \
llustrates the procedure used to transition 0X0001 0x0000 0x0100 0x1000 0x0101 0x1001
binary values into numbers on the clock: l L L

1. The numerical time 1s calculated

through use of the C++ program. G 0Ty LR L0y S TN

2. Each ones- and tens-place digit 1s l l v

separated and stored mto ndividual

values, and then converted to binary. \\ [;1“ \
3. Binary pairs are concatenated into 8- @@@@@@ onn @ @E@
bit bytes for transference to the
SN74HCH595 chip using the shift \\ / \\\ V
v
Operator. I II I I \! i X 6 100 v i

4. The bit-shift operation takes place, P ccccc.0

shifting all three bytes into place in the

SN74HC595 chip. l t t

5. The informaton 1 the most 0-4 Omeurs 04 Dureurs 0-4 Ovreurs

7o Nme Tuee 7o Nme Tuee 7o Nme Tuee

vVuyyuuu vIUyyuuu B gut

significant nybble and least significant
nybble are transferred to the K155ID1
chip. Each of these contain a 4-bit
binary number representing the digit ‘ l

to display on the Nixie tube. v

6. The high voltage signal through the
anode of the Nixie tube 1s open on all (;\
cathode lines, except for the desired
number, causing the requested —
number to glow. hm-n‘i’

Further description of the wiring diagram will

be provided in Section 3 (Circuit Schematics),

d le for i i th both of Figure 1.4 | Representation of the procedure to
and program code lor mnterfacing wi oth o extract digits from time and use both ICs to transmit

these devices will be provided in Section 4. them as signals to the Nixie tubes.

6

1.4. ESP32 Adafruit Featherboard

The Adafruit ESP-32 Huzzah microcontroller
1s an excellent featherboard for prototyping

purposes. To save time constructing the Nixie
tube clock, using a featherboard prevents us
from soldering thermal ground planes and
using a heat gun to solder intricate
components. Take, for example, the USB-to-
UART chip already present on the ESP32
feather — with terminals nearly as small as
the width of a human hair, this process
requires specialized equipment beyond the
budget of a simple hobbyist. In an effort save
time, effort, and frustration, the featherboard
1s employed 1n this design. In addition to this,
its power equates well with the requirements
of the project: with four distinct timer
channels, a sufficient number of additional
GPIO pins, and low power requirements and
power consumption, this makes the ESP32 an
excellent choice [5].

Using Sloeber, an IDE built off of the Arduino
workspace that packs a lot more power, we
can interface with the ESP-32 quickly to
prototype code. The procedure required for

mstalling Sloeber for the ESP32 can be found
in Appendix A, on Page 31.

1.5. NCH6100HV Voltage Step-Up

The NCH6100HV, designed by Yan Zeyuan,
supplies us with the voltage required to drive

the Nixie tubes. This step-up converter
accepts a 12V signal and amplifies it to 200V,
supplying the filament with enough power to
1onize the neon gas.

An 1mportant calibration 1s required to
accurately step the voltage up to 200 volts. On
the circuit board there 1s a potentiometer that
mcreases the high voltage output with respect
to the clockwise rotation angle. From the
starting orlentation shown in Figure 1.5, my
module required at least a 270-degree rotation
to break 200 volts.

The test shown in Figure 1.6 allows us to
determine the correct calibration, as some
devices may differ depending on the voltage.
For a standard 12V mput, specified by the Bill
Of Materials in Table 1.1, we can simulate this
voltage by using a DC power supply and
setting up a simple circuit to test this. Both

e

0O O

o O m

LR

HEEE

=L A

Figure 1.5 | Voltage step up potentiometer, adapted from the NCH6100HV datasheet [7].

® HVour Vi ®
® GND GND ® *
a SHDN —e
S DC
———e

Figure 1.6 | Standard NCH6100HV voltage test setup.

GND termunals of the NCH6100HV are connected to their
respective ground and voltage lines; the mput to the positive and
negative leads of the DC power supply, and the high voltage ground-
and-power to the rest of the circuit.

Iteratively turn the potentiometer half a quarter-turn at a time.
Warning— For safety purposes, each time ensure total deactivation
of the mput voltage line: turn off the DC power supply and disconnect
both leads before adjusting the potentiometer with a screwdriver.
Read and understand the disclaimer i Appendix F before
proceeding, and disconnect all voltage sources before handling
electrical devices.

The SHDN line, shown in Figure 1.6, can also be used to turn on or
off the output of the NCH6100HV. A high signal disables the high
voltage line, while a low signal enables it. This can be useful when
connected to a GPIO pin on the ESP32 module, especially since
Nixie tubes have a mimimum reported life of approximately 5000
hours. Coupling the device with a motion detector could activate the
clock only when a viewer 1s present, saving power and ensuring longer
life of the tubes.

For further information on efficiency curves and power specifications,
reference the datasheet.

2. Manufacturing

92.1. Engineering Drawings

Since most Nixie tube clock-builders don’t
have access to a machine shop, I've simplified
the design process to accommodate these
limitations. Besides using standofts for the
printed circuit boards, no fasteners are
required; the whole manufacturing process
can be accomplished with wood glue, a drill,
and an XActo™ mini-saw (or equivalent).

Appendix Bl displays the Bill of Materials
with further description of the components
used m the design. Figure 2.1 shows the
exploded view of the Nixie tube clock, where

the ®top PCB and (@)bottom PCB are
separated by standoffs. The bottom PCB has

the @ESP32 module attached as a hat, or

soldered; whichever 1s the easier
configuration. The (©NCH6100HV s

mounted to the bottom of the (Denclosure
box by either adhesive or two M1 screws.

Four different standoffs are used 1n this
design. The balloons in Figure 2.2 and Figure
2.3 lustrate this:

(@) M2.5x20mm + 6mm Thread
M2.5x6mm

(9) M2.5x15mm + 6mm Thread
M2.5x6mm + 6mm Thread

The top of the assembly contains the @top
PCB: soldered to this are the three @)yellow
LEDs and the ADIN-14 Nixie tubes. The
@mounﬁng cover fits directly over all of these
components and 1s bounded by the topmost
standoff.

Figure 2.4 displays the front view detal
drawing from Appendix B2. The broken-out

Figure 2.2 | Side view of full Nixie clock.

o 75.0 67.5

*
] 25.0
B |

25.0

@15.0,_’3

L

Figure 2.3 | Front view of full
Nixie clock.

section displays the diameter hole that accepts
the ®I2V adapter, which is press fit from the
mside then fixed in place with adhesive.

The box can be constructed using four
wooden walls, a bottom, and the top cover, but
the design I've illustrated adds a slight =30°
chamfered edge. This optional aesthetic 1s
achieved using a small square rod of
approximately 8.0mm square cut into four
sections to form a perimeter around the box.
After wood glue adheres this feature to the
box, the chamfer can be added through

sanding.

Appendices B3-B6 have 1:1 drawings that can
be printed out for the cutting and drilling
process. B3-B5 contain the walls of the box,
while B6 contains the top mounting plate.
Positional,
GD&T callouts require the position of the
holes to accommodate the @)yellow LEDs,
the (@DIN-14 Nixie tubes, and the
@mounﬁng cover. The mounting cover also
safety
electrocution from

maximum material condition

provides a feature, preventing

high-voltage, exposed
wires running from the HV power supply to
the Nixie anodes. In order to accommodate

the profile of the circuit board, the bottom

10

Figure 2.4 | Front view detail drawing of @enclosure box.

2 1
f 1400 ~
c NOTES
] [| | | | | 1 UNLESS OTHERW SE SPECIFIED:
I 1L »uow N MILLMETERS
e T i i i i [2
- (710} AGLE
B 210k 5 BREAK SARP EOGES 1.0 MAX B
[~ -
Blo@[A[e]q] 600 ﬁgmvgg g
2 P60 MIN _—
-\ = _— §L;o [Elos@]als]c]
- / B15.0 MIN
10
MW TN TN TN TN\ i -.ﬂ.
650[20 I ;Y_I
[&
(214 1
A
DWG NO. [60F 8
« |_VERSION |1
PART | TOP/COVER BOARD
AUTHOR(S) | F3B AR (LM 001) [FUTURE GADGET LAB
o RYAN KISSINGER | WESTERN DIVISION - SITE 117
T J— 1

Figure 2.5 | Top cover from Appendix B6.
plane of the mounting cover can be sanded to-
shape.

Figure 2.5 previews the sheet attached in

Appendix B6, along with all the positional
The

following positional tolerances are observed.

40.50(M)
B1.0M)

Figure 2.6 | GD&T positional tolerances.

Although the
manufacturing the box afford little accuracy,

tolerances required for assembly.

AlB|C

AlB

C

tools recommended for

the alignment of these components 1s

detrimental to ensuring proper fit of the top
board. This GD&T callout ensures the hole 1s
sized large enough to allow the Nixie tubes
and LEDs are able to fit through, while not
drastically exceeding 1deal dimensions. The
spacing between the LED holes and the Nixie
tube holes 1s tight, so proper positioning
tolerances ensure no manufacturing errors
produce merged holes.

2.2. Manufacturing

Use the 1:1 drawings in Appendices B3-B6 as
a reference to cut the craft wood. Print two
copies of the BOARD, LT+RT, as the left and
right sides of the Nixie clock are the exact
same. Note that the drawings provide the
board width as 5.0mm; if a different board
width 1s desired, adjust the measurements
accordingly. Also print two copies of the TOP
BOARD, as the bottom board holds the same
perimeter dimensions. Drill holes according
to the positional tolerances in Appendix
drawing B2.

The drawing in Appendix B2 displays a top
view of the box. Regardless of the width of the

wood selected for the outer frame, the internal
dimensions of the inner opening will remain
consistent. B2 also displays the chamfered
upper edge, which 1s an optional feature (as
previously discussed.)

Nails are an acceptable option to fix all sides
of the box. In an effort to make this project
require minimum tools and simplify the
assembly process, this 1s also achievable with
wood glue. After ensuring the sides of the box
hold proper perpendicularity, lather wood
glue between surfaces on the corner joints.

Once all surfaces have properly been coated
and oriented, stand the frame upright, and
allow proper time for drying. Wood glue often
dries stronger than the wood itself. During the
drying process, 1 created internal fillets by
applying glue along the 90° edges to ensure
exceptional strength.

With the outer bounding walls of the box
constructed, adhere the bottom board to the
box. After the assembly has dried, screw
standofls into the M2.5 holes on the bottom

board.

e

LT+RT
Board 1

Front Board

Back Board

N

LT+RT
Board 2

X

702772

S

2

Figure 2.7 | Proper orientation of the boards forming the enclosure box.

11

The outer chamfer design adds aesthetic to
the box, but 1s completely optional. To
achieve this, I used four pieces of an 8.0mm
square rod, glued them to the upper part of
the box, and sanded them down to shape.

Sand the faces of the box to correct any
imperfections from the corner joints, ensuring
flat planes on all four sides. Once the entire
assembly has been completed, I recommend
painting the box before sanding the edges. 1
used two different paint colors: dark brown to
maintain a classic aesthetic, and gold to
embellish the letters on the front of the box.
Once the box has been painted, sanding the
edges adds a touch of a “worn” aesthetic. This
feature can easily be corrected by re-painting.

After soldering all the boards, fix the
NCH6100HV high voltage power supply
using two M2.5 screws. The position 1s shown
m figure 2.2 by Balloon 6.

Attach the bottom (small and square) PCB in
proper orientation to two standoffs. Insert the
DC adapter into the back hole of the Nixie
DuPont
wires to both terminals of its screw terminal,

clock. Connect two male-female
and connect the remaining female side of each
wire to the mput/low voltage side on the
NCH6100HV power supply.

Wire the HV side of the NCH6100HV power
supply with two female-female DuPont wires’.
These will later be connected to the JP2 pin
header on the top board, to ports 1 and 2
(shown i Appendix C1.)

Connect female-female DuPont connectors to
all seven pinouts on the bottom board (shown
m Appendix C3.) With the top board not yet
connected to all four standoffs, connect the

* If control of the high voltage connection is desired,
connect a third female-female DuPont wire to the
SHDN terminal shown in Figure 1.6. Connect this to
one of the unused GPIO pins discussed in section 3.6.

12

wires from the bottom board and the
NCH6100HV high-voltage output to the
underside pin headers:

e GND to GND.
e HV to +180-220V.

Connect the bottom board DuPont wires to
the top board as follows:

e One +5V bottom pinout to the top
+5V line.

e PULSE to PULSE.

e SHCP to CLOCK.

e STCPto LATCH.

e DS to DATA.

e DIVLED to DIVLED.

Space the bottom board from the top board
using standoffs. For the other two holes that
were unused by the bottom board, screw these
two standoffs to the same height as the other
two.

By this point, all four pillars of standoffs
should reach approximately the height of the
enclosure’s top surface. Attach the top cover
to the top of the upper PCB, then fasten
screws/small standoffs to join all four M2.5
holes, sandwiching the top cover and upper
PCB board together”.

Once all connections have been completed,
connect the 12VDC adapter to the wall supply
cord. The device should properly boot and
display the time.

"If needed, the top cover and top PCB can be separated
with standoffs instead.

3. Circuit Schematics

3.1. Power Considerations

Since the device uses two distinct voltage lines,
it’s critical to use proper circuit design to
segregate them. Powering the Nixie tubes
requires nearly 200 volts. Without using a
device embedded with BJ T's or Zener diodes
to separate these voltage lines, electrical faillure
1s almost certainly assured.

The other line operates on a standard 5V
supply. This powers the ESP32 module,
LED:s, logic-operating
(which are often stepped down to 3.3V
through the ESP32 feather board.)

and components

In order to power both these supply lines
while using a single voltage source, we use a
78051V voltage regulator. Since our device
obtains power from a 12V wall power source,
we can use this source to power both the 200V
supply line and the 5V supply line, while
maintaining a proper degree of separation.

1

v Vi
C5 GND

/le /P‘;LH ’PEUI

Figure 3.1 | Voltage regulator circuit component. See

Appendix C3 for complete drawing.
In Figure 3.1, the circuit schematic for the
voltage regulator is displayed. The leftmost
side 1s supplied with 12VDC from a wall
On each
capacitors filter out noise: the left side with
0.1pF and 10pF capacitances; and the right
side with 0.1puF and 22pF capacitances. This

source. side, two decoupling

" Ensure the USB Type A and 12VDC power supply
are NEVER connected at the same time. This can lead
to serious 1ssues with the microcontroller.

13

ensures any additional noise during operation
of the nixie clock 1s filtered out and supplies
our microcontroller with the standard 5V
required.’

The 12V supply line 1s also connected to the
NCH6100HV high-voltage boost converter,
which supplies 200V to the Nixie tube circuit.

3.2. PCB Separation

As shown in Appendix C2 and C3, the circuit
for the Nixie clock has been divided into two
PCB boards: an upper board to mount the
Nixie tubes, LEDs, and logic; and a bottom
board to house the ESP32 and 7805TV

voltage regulator.
Both PCBs have sets of pin headers.
Lower Board - 1x06 JP2

e CLOCK: Clock/SHCP pin.

e LATCH: Latch/STCP pin.

e DATA: Serial/DS pin.

e PULSE: Drives both ime LEDs.
e DIVLED: Powers first LED.

e PIN21: Optional GPIO pin.

Lower Board - 1x03 JPI
e 5V: Two additional pins breaking
out the 5V supplied by the voltage
regulator.

e GND: Ground pin.

Lower Board - 2x08 JP3

e Used to break out the rest of the
components available to the

ESP32 module.

Upper Board - 2x006_ JP1
e Connects pins to the SN74HC595
surface mount chip.

Upper Board - 2x03 JP2

e +5V: Connected to lower board
5V supply pin.

e HYV: Connected to HV side of the
NCH6100HV high-voltage power

booster.

e GND: Common ground,
connected to the lower board
GND.

Both boards’ MZ2.5 holes are concentric.
When looking down on the Nixie clock from
the top, with the front pointing away, the
bottom board 1s mounted to the right two
standoffs.

3.3. IC Connections

Figure 3.2 displays both the high voltage and
logical voltage supply lines, separated by the
SN74141 chip.

The 74HC595 has 16 total pins. QO through
Q7 are the logical pins representing the 8-bit
register, while Q7s (or Q7’) represents the
daisy-chain output pin, connected to the next
DS/Serial pin.’

The MR pin and VCC are connected to +5V.
The Master Reset pin 1s set high to disable
reset of the registers. GND and Output
Enable (OE) are grounded to enable output.
DS, STCP, and SHCP are connected to the
ESP32 microcontroller, driving the logic of
the whole process. STCP and SHCP are
wired to every SN74HC595 shift register, as
the logic of the process requires every register
shifting at the same time; without all registers
connected, the Q7s would be unable to shift
binary values to the next register.

QO through Q7 are separated into four-byte
packages that are each wired to a K1551D1
chip. The logic of bytes A, B, C, and D
determines the active numerical gate on the

1
|
}
]
: 1C3 E
| 0 L&
: 1 3;’ 1 r.v:&|
I 3 2 =9 2 [To]
I 6 A K 313 3 «
I B 4 D 4
I ’ C 5 Hid 5
) 4 | =11
I D &5 D 6
'8 7 310 7
l M=
I g /\ g 32 g
: — 0 RHDP FXNC
| 74HCH95D,118 IC1 74141N
| +
1 16 1 4
| — Eﬁc 8§ 2 NX H O N
I
DS "]l-g DS Q3 i IC6 i, /\ m
I > OE Q4 o b 2
ELgPP : ﬁ STCP - Q5 ? 1 3;5 1 op e | [ES
7 SHCP Q6 2 2 b 2 &
10 | mr 7 3 o 2 3
1 9 Q7 g %] A 3 D3 3 _
! Q7S GND O 2 bid "
' 1c s b 5 HV_2
[} «d GND A D : 11 : N
! -
| % - 7 310 7
I 3 GND s b L
| 9 JL 9
: 0 RHDP |-Xnc
! 74141IN
1

Figure 3.2 | Integrated circuit connections. Shows both the +200V high voltage side and the +5V logic side, separated by
the SN74141 chip. See Appendix C1 for the full upper board schematic.

’ See Figure 1.1 and Table 1.2.

right-hand side of the chip through use of B]'T
and Zener diode logic, separating the high-

PULSEZ2

voltage line from the logical line (although all
voltage lines share a common ground.)

The Nixie tubes are wired to all 0-9 terminals
of the K155ID1 Binary-to-BCD chip. Left-
hand decimal point and right-hand decimal

=¥
-1
N
LED3
LED1

point wires are left disconnected since they are

50 =x

voltage line. Dividing the Nixie tube and the
HV line 1s a 120KQ resistor, to ensure proper
current and correct voltage drop between the

PLS_R2 LED2

—
o
wn
I
o

PLS R3

r
!
1
!
I
!
1
I
I
not in use. The “A” terminal accepts the high- : e
E
I
I
1
I
Nixie tube and ground. :
L

Please reference Appendix CI for the full

upper board schematic to fully understand
Figure 3.3 | LED connections for time separator line

how the Q7s daisy chain connection works, as ¢ ’ ' D
and first LED line. See Appendix Cl for the full

well as how the STCP and SHCP lines are

schematic.
connected. Beyond daisy-chaining the Q7s
line to the next serial input, the other two 2-
Nixie groups are wired exactly the same as
shown 1 Figure 3.2.
e rsT BT
NeX—2— TX sck |=EK
NeX——SE] Rx spa =24
MISO | o el l—scL
3.4. LED Connections MOSL] wmosi T
He i
Three LEDs are used in this design: two A3 | 43 33 38
. . A2 | o o |2z
separating the hours, minutes, and seconds, A 2
and one separating the tens’ and ones’ place Iﬁ‘g A0 13 31355
NG X——=— NC USB
of the hours. v BL EN E—xne
nex—=Y 1 3y par AT _xne
Recall the Nixie tube clock was originally SND
designed to play homage to a device from
Steins;Gate, the Divergence Meter. The Figure 3.4 | ESP32 schematic for the bottom board.

. . . See Appendix C3 for the full schematic.
device shows “world-lines,” following the PP

notation of a number between 0 and 10 with
six significant figures. This LED 1s an optional
addition that can be used to display custom
messages at the top of the hour.

3.5. ESP32 Connections

Figure 3.4 shows the breakout for the ESP32
featherboard. The USB pin acts as the +5V
supply for the microcontroller, and GND
grounds the device to the project’s common
ground.

The rest of the GPIO pins are broken out for
either connection to the upper board, or
optional logic that can later be added. Pins 14
through 33 are used 1n this project. Pins used
in this project are listed in the following table.

GPIO Pin Description
21 Optional buzzer control”
14 Clock/SHCP
32 Latch/STCP
15 Data/Serial/DS
27 First LED control
12 Time separator LEDs

Table 3.1 | Pins used for the Nixie tube clock.
*Connection used for an optional feature.

3.6. PCB Design Considerations

Appendices C2 and C3 display the EAGLE™
PCB renderings.

The top PCB has been designed for Nixie
tubes and LEDs to be directly soldered.” The
74HCH595 shift register, 508, and 150KQ
resistors are the only surface-mount
components; although the KI155ID1 chip
would 1deally follow suit, no surface-mount
packages are available (due to the antiquity of
this component.) A better visualization of
these spacings, without the air wires and
mounted components, can be found n

* Since Nixie tubes only have an estimated 5000 hours
of life, using Mill-Max breakout socket pins can
facilitate the replacement process.

16

Appendix B6, as the top/cover board directly
mates with the top circuit board’s features.

The bottom PCB 1s mounted directly below
the Top PCB. The two MZ2.5 holes are
concentric with the two left holes of the top
PCB, separated by standoffs. The ESP32
featherboard 1s soldered to the right side of the
PCB’ with the USB Type A female port facing
downwards. Programming the ESP32 either
requires removal of the PCB or drilling a hole
into the side of the box so that a USB Type A
cable can connect to it".

"Instead of soldering the ESP32 directly to the board, a
female pin header can be soldered here instead, as the
hole distance follows the standard 2.56mm separation.

4. Program Code

Now that all the engineering schematics and electrical circuit designs
are established, the program code can be fully understood. The
language delegated for this project is the industry standard, C++; as a
mid-level language (compared to high-level languages like Python or
low-level languages like Assembly), we can easily interface with the
ESP32 microcontroller. Personally, I prefer to use a program called
Sloeber that extends the strength of the Arduino environment into
higher-level programming for more demanding projects.

The state diagram shown below in Figure 4.1 demonstrates the logic
for the finite state machine design. State 1 serves as a hub state at
which time 1s continuously displayed. Changing the time state 1s
contingent upon user interaction with left and right buttons (denoted
as the @ and @ symbol, respectively). Pressing both buttons together
designates an “accept” command, while left or right either increment
or decrement the selected value. Upon an accepted double-press, the
program accepts selection of whether hours, minutes, or seconds are
to be changed, starting in the hours’ selection by default. Once the
double accept command 1s entered, this quantity can be decremented
or incremented by the left and right buttons, respectively. When the
quantity has been adjusted to the correct value, entering the accept
command again progresses the program back to the hub/time state.

This feature, or course, 1s optional, but highly recommended: Section
4.2 details configuration of the start ime at boot. Incorporating button
control 1s advised to enhance user interface with the Nixie clock, as it
significantly simplifies the process.

State 5 1s also an optional state. For my own design, the numerical
display flicks through random numbers before settling on the top-of-
the-hour time. This state exemplifies how additional states (e.g. a
motion sensor state to prevent overuse of the Nixie tubes when
nobody 1s around) can be added to further modify the clock. This 1s
also why our circuit schematic in Section 4 allows for additional
pinouts.

17

C & 9

S2a
SO Always S1 [HUB] C 8&& 2 C && 2 S2b
Init e Hours Change Hour
e Select (& or D)
.S ‘
&
s & c)
//// /\(
6\3' y4 \ 4
N $
&L >3 C && D S3b
oQO c s Minutes Change Min
~ Select (C or D)
S5
Top-of-hour
Message Mode c =
v
543 C & D S4b
Seconds Change Sec
Select (€ or D)
Figure 4.1 | State diagram for the program’s finite state machine.

18

4.1. Table of Varables

The following table lists all variables in the main program. Variables
with an asterisk are related to an optional feature that can be added
on. See Section) for additional feature options.

Variable Type | Description
Pinout Variables
latchPin Static Int STCP on the 74HC595.
clockPin Static Int SHCP on the 74HC595.
dataPin Static Int DS/Serial on the 74HCA595.
pulsePin Static Int Drives two top-mounted LEDs Fhat act
as separators for the hour.
buzzerPin* Static Int Drives the buzzer for sound.
incPin Static Int Button incrementing time.
decPin Static Int Button decrementing time.
statusPin Static Int Displays status of time selection.
divPin* Static Int Drives first LED separating hour tens
and ones place.
timebuf Static Int -
Time Variables
dataH Byte Stores hour value in binary form.
dataM Byte Stores minute value in binary form.
dataS Byte Stores second value in binary form.
. Time extracted from the millis()
currenttime Int .
function.
mil[2] Double array Records and stores previogs and last
time state for comparison.
. Calculates time change from
d_muil Double (mil[1] - mil[O]g).
Time in milliseconds. Used for pulsin,
T_msec Double of LEDs and timing music n(i)tes. ’
Holds the active value for the PWM
pulseglow Int cycle of the blinking time LEDs.
T sec_act Double Active time 1n seconds.
T secs Double Time 1n seconds. {0 < T secs < 59}
T s_ones Int Seconds ones’ place.
T s_tens Int Seconds tens’ place.
T mins Double Time in minutes. {0 < T mins < 59}
T m_ones Int Minutes ones’ place.
T m_tens Int Minutes tens’ place.
T hrs Double Time 1n hours. {0 < T hrs < 59}
T h_ones Int Hours ones’ place.

19

T h_tens Int Hours tens’ place.
T_days Double Counter for number of days passed.
. Timer that slows or accelerates BPM of
Gmult Double

song.

Song Variables*

GOS_duration[13]*

Double array

Contains the duration of each note.

GOS_highnote[13]*

Double array

Contains the frequency of each note.

EstablishSongStart™ Bool Returns if song has started.
Songknd* Bool Returns 1f song has ended or not.
SongStart® Double Start time calculated from when first run.
SongTime* Double Song time relative to the start time.

. Current value pulled from
NoteTime* .
ote e Double GOS_durationl[i].
ActiveNote* Int Current note pulled from

GOS_highnotei].

Custom Message Variables “DivMode” *

DivMode_SO[20] Int array Holds seconds ones’ value for message.
DivMode_ST[20] Int array Holds seconds tens’ value for message.
DivMode_MOI[20] Int array Holds minutes ones’ value for message.
DivMode_MT[20] Int array Holds minutes tens’ value for message.
DivMode_HO[20] Int array Holds hours ones’ value for message.
DivMode_HT[20] Int array Holds hours tens’ value for message.
: Current displayed number. Fed into
DivNumber Int DivMode arrai)/s zo pull respective values.
Finite State Machine / Program Variables
OpMode Int Operation mode.
BothPressed Int Returns duration both buttons pressed.
DecPressed Int Returns duration left button pressed.
IncPressed Int Returns duration right button pressed.
TimeMode Int Specifies ime mode.
Change'Time Bool Is the time to be changed?
DoublePress Bool Is there a double press?
DecPress Bool Is there a left button press?
IncPress Bool Is there a right button press?
PressButtonBuf Double Buffer preventing rapid button presses.
T 0 Int -
SecondPassed Bool -
T ms0 Double -
MSPassed Bool -
Currentms Double -

Table 4.1 | Program variables.

20

4.2. Setup/Initialization

In the mitiahzation loop, program variables are set to proper initial
values. The following declaration establishes the second value that the
clock starts at from boot:

222 // Hour Minute Second
223 double T sec_act = (11*3600) + (20*60) + (02);

Snippet 4.1 | Calculation of initialization starting time.

4.3. Time Control

This program operates based upon the innate Arduino function
millis(), which returns the time that has passed since the board was
powered on. We obtain the time difference (since the last ime we
checked) by comparing our new value with a previous value, then
store 1t nto the double d_mil to later add to a variable storing the
active time 1n seconds, dividing this value by 1000 to obtain the exact
current time 1n seconds.

251 int currenttime = millis();
252 mil[l] = mil[O0];
253 mil[0] = currenttime;

254 double d mil = mil[0] - mil[1];
255 double T sec_act += d mil/1000;

Snippet 4.2 | Current time calculation from millis().

This time value, stored in the double T_sec_act, 1s used to calculate
all the rest of the values. For sensitive time values that require the use
of significant figures beyond whole numbers, the double type 1s used;
otherwise, integer types store tens- and ones-place values for binary

c()nversi()n.
257 PressButtonBuf += (d mil/1000);
258 T days = (int) (T_sec_act/3600) /24;
259
260 double T hrs = T sec_act/3600;
261 while (T_hrs > 24)
262 T hrs -= 24;
263 T h ones = (int) ((int)T_hrs % 10);
264 T h tens = (int) (((int)T_hrs/10) % 10);
265
266 T mins = T_sec_act/60;
267 while (T_mins > 60)
268 T mins -= 60;
269 T m ones = (int) ((int)T_mins % 10) ;
270 T m_tens = (int) (((int)T_mins/lO) $ 10);
271
272 T secs = T_sec_act;
273 while (T_secs > 60)
274 T _secs -= 60;
275 T_s_ones = (int) ((int)T_secs % 10);
276 T s_tens = (int) (((int)T_secs/10) % 10);

Snippet 4.3

Deriving tens’ and ones’ values from current time.

Fach ten-and-one time set for seconds, minutes, and hours first
requires dividing out our T_sec_act value. From T"_sec_act, we drive
a double representation of the hours, minutes, and seconds. This 1s
then converted to an integer type, and the Modulo (%) operator 1s
used to extract both the tens and ones place. In order to keep our
time values within the proper bounds (so that minutes or seconds, for
example, don’t surpass 60), we use a while() loop to constrain these
values.

22

4.4. Defining a Proper Button Press

To prevent noise from affecting the accuracy of the buttons, we must
clearly define what constitutes a button press for our program. Since
our finite state machine passes through the loop() code many times
a second, we check both of our buttons for any state changes:

310 bool dec

digitalRead (decPin) ;

311 bool inc = digitalRead (incPin) ;

Snippet 4.4 | Button press check.

Since we now have variables representing the state of each button, we
assess how long they’ve been pressed. How many consecutive passes
have they been pressed? After testing by printing button presses over
serial, I found that a value around 10 i1s most effective for defining a
button press. We use the integer type variables BothPressed,
DecPressed, and IncPressed to count consecutive presses. If this
cycle 1s broken, or the button 1s not held down for ten cycles, these

variables reset themselves to zero.

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

// Defining double press

if ((dec == 1) && (inc == 1))
BothPressed += 1;

else
BothPressed = 0;

if (BothPressed >= 10)

{
DoublePress = 1;
DecPress = 0;
IncPress = 0;
BothPressed = 0;

}

// Defining decrement press

if ((dec == 1) && (inc == 0))
DecPressed += 1;

else
DecPressed = 0;

if (DecPressed >= 10)

{
DoublePress = 0;
DecPress = 1;
IncPress = 0;
DecPressed = 0;

23

337 // Defining increment press
338 if ((dec == 0) && (inc == 1))

339 IncPressed += 1;
340 else

341 IncPressed = 0;
342 if (IncPressed >= 10)
343 {

344 DoublePress = 0;
345 DecPress = 0;

346 IncPress = 1;

347 IncPressed = 0;
348 }

Snippet 4.5 | Defining button presses.

The DoublePress, DecPress, and IncPress values are Boolean state
variables that raise flags when a button state has been pressed, or
“raises the hand” of these variables so that this information can be
processed later.

4.5. HX711 and K155ID1 Interface: Program Side

We have already discussed the ramifications of the HX711 and
K155ID1 from a hardware perspective. We've also discussed the
circuit design to interface with these components. Now, we enter the
final step: writing code to push our four-byte binary integers to the
Nixie tubes.

In Section 1, we defined three important pins on the HX711: the
Latch Pin, the Data Pin, and the Clock Pin, the three pinouts that
allow us to operate the shift register. The Data Pin, or Serial pin,
accepts binary values; the STCP/Latch Pin defines whether the
HX711 1s listening for values; and the SHCP/Clock Pin shifts the
value in the Seral/first register to the next available position on every
rising edge transition. Our program initializes these three pins in the
setup() function.

24

526 if (OpMode == 1)

527 {

528 DivNumber = 0;

529

530 dataH = GetBinary ByteForm(T_h ones, T _h tens);
531 dataM = GetBinary ByteForm(T_m ones, T _m tens);
532 dataS = GetBinary ByteForm(T_s ones, T_s_tens);
533

534 for (int j = 0; j < 1; j++)

535 {

536 digitalWrite (latchPin, 0); // Start listening
537 shiftOut(dataPin, clockPin, dataH);

538 shiftOut(dataPin, clockPin, dataM);

539 shiftOut(dataPin, clockPin, dataSs);

540 digitalWrite(latchPin, 1); // Stop listening
541 }

542 }

Snippet 4.6 | Pushing binary values to the HX711.

The OpMode state variable determines whether the program is
operating in State 1 or State 5: the hub/time state, or the message
display state. When OpMode == 1, the program is in State 1.

The three variables dataS, dataM, and dataH each store a full byte of
information, carrying the four-bit ones’ and tens’ values together.’
After each ones-and-tens binary pair 1s concatenated, these values are
sent through the shiftOut() command to be physically transferred
to the registers in the HX711. Note that the Latch Pin must be set low
before shifting values. When the Latch Pin undergoes a rising edge
transition to high, the HX711 stops listening and the registers’ 8-bit
representation 1s shifted to physical representation on pins Qa-Qh.

The ShiftOut library [9] uses the Serial/Data Pin and the Clock Pin
to shift values mto the registers when the Latch Pin 1s listening. To
generalize, the procedure goes as follows: the Clock Pin 1s set low to
prepare for rising edge transition; the Serial Pin holds the next value
to be passed through; the Clock Pin 1s set high so that the rising edge
transition shifts the Data Pin values to the next register.

* The circuit schematic in Section 3 was accidentally wired in the wrong order, but
this is not an issue. Due to the wiring configuration of the three HX711 chips, where
the ESP32 Serial is connected to seconds first, the order of shifting is actually
seconds, then minutes, then hours. In my fina/ program code, lines 530 and 532
have the left-hand side of the equal sign switched in order to fix this.

25

4.6. Time-Responsive LEDs

I included yellow LEDs as separators for the hours, minutes, and
seconds on the clock. Instead of having them always on, the LEDs
undergo a “bounce” effect, transitioning from off, to on, then off again
with a period of two seconds. This behavior is better explained by the
following equation and graph.

time
200)

pulseglow = fabs(255 * (sin((3.1415)*(((double)T_msec)/ZOO))))

PWM = |255 - (sin(x

TIME VS. PWM VALUE

300
250
200
150
100

PWM VALUE

o ¥—r—r—rr+r—rrrrrrrrrrrr—r—¥Yrrrrrrorororro
0 50 100 150 200 250 300

TIME [ms]

Figure 4.2 | Plot of PWM equation.

26

5. Additional Features
5.1. Music

I added music to my nixie tube clock as an alarm, with the option of
also having 1t play at the top of the hour. Only one GPIO pin 1s
required per buzzer. Fach additional chord note requires another
buzzer. For the example provided below in Figure 5.1, two buzzers
would be required to play the melody. This song can also be played
with a single buzzer, taking the high note of each chord.

Gate of Steiner

Intro: Simple Melody

Composed by Takeshi Abo Arr. by Ryan Kissinger

J=76

Gris s Fwoas o

Figure 5.1 | Sample song for creating music with a buzzer.

I will cover the process of converting sheet music into a song for the
buzzer. I assume the reader has minimum experience with music
theory, so I will briefly explain the math behind calculating the rhythm
of the song and turning these notes into code.

The notation =76 expresses the beats-per-minute rhythm of the
song. The stacked fours represent that there are four beats per
measure, or per section ending with a vertical bar. So with this
particular example, we derive the following equation to calculate beats
per millisecond:

(76 beats 1 min 1 sec)_1_ 9 ms

beat

min . 60 sec . 1000 ms

Now that the timing has been established, we must also know how to
convert music notes into frequencies. Middle C has a frequency of

27

261.63. A lookup table of note vs. frequency (provided in Appendix
D) presents us with the values of each note. To use my selected song

as an example, this 1s the table I generated from the musical values.

Note names follow the notation of note and octave: C), for example,

1s octave) note C, one octave above middle C.

Time from
Note Name Freq[ltljze]ncy start
[ms]
Cs 593.95
1 0
Fa 319.93
B 466.16
9 4 ik 591.75
Ty 349.93
b 659.95
3 L o 1183.50
B 466.16
} 593.95
4 Cs 1578.00
Ay A15.30
B 466.16
5 4 : 9169.75
Ga 392.00
~ 392.00
6 G4 9761.50
} 415.30
7 A'a 9958.75
: 466.16
8 B 00 3156.00
o 311.13
AP 415.30
9 4 : 3747.75
by 311.13
b 659.95
10 Es it 14339.50
392.00
11 G4 4734.00
o 311.13
B 466.16
12 4 ik 5790.95
by 311.13

28

Table 5.1 | Note frequency and timings for example song.

Since I used a single buzzer, my code uses only the topmost notes of
each chord. My sample code can be found below. In the first code
snippet, notes and timings are both defined in 12-value arrays.

double GOS_duration[13] = double GOS_highnote[13] =

{ {
100*Gmult, NOTE_CS,
591*Gmult, NOTE As4,
1183*Gmult, NOTE_DS5,
1578*Gmult, NOTE C5,
2169*Gmult, NOTE AS4,
2761*Gmult, NOTE G4,
2958*Gmult, NOTE GS4,
3156*Gmult, NOTE_Z—\S4,
3747*Gmult, NOTE Gs4,
4339*Gmult, NOTE DS5,
4734*Gmult, NOTE_ G4,
5420*Gmult, NOTE GS4,
6000*Gmult 0

Snippet 5.1 | Defining notes and timings.

The code below implements the arrays we defined above. It plays the
notes with respect to the process of our finite state machine, when the
operation mode 1s set to play music.

if (OpMode == 2)
{

if (EstablishSongStart == false)

{
Serial.println("Song Started.");
SongStart = currenttime;
EstablishSongStart = true;
NextNote = 0;
SongTime = 0;
ActiveNote = 0;
digitalWrite(divPin, 1);

}

SongTime = currenttime - SongStart - 1000;

if (SongTime > SongStart+GOS_duration[ActiveNote])

{
ledcWriteTone (2,GOS_highnote[ActiveNote])
ledcWrite (2,255);
ActiveNote += 1;

29

if (ActiveNote > 14)

{
SongEnd = true;
Serial.println("Song ended.") ;
}
if (SongEnd == true)
{
EstablishSongStart = false;
SongEnd = false;
OpMode = 1;
ActiveNote = 0;
NextNote = 0;
ledcWrite (2,0) ;
digitalWrite (divPin, 0);
}

Snippet 5.2 | Example code for programming a song.

If the song has not yet been started, all the values are set to their
respective imitial quantities. Fach pass through the main program
code, the SongTime 1s calculated according to the time that has
passed since the song began. Should the current ime be greater than
the value i the array defining note timings, the respective note 1s
played, and the array is incremented to the next note. If the active
note 1s greater than 14, the song 1s over, And if the song has ended,
all the state variables are reset, and the sound 1s turned off.

30

APPENDICES.

Appendix A: Interfacing with Sloeber

[WIP]

31

Appendix B: Engineering Drawings

32

Rim

LI LT |

ITEM NO. PART NUMBER

DESCRIPTION QTY.

DIVERGENCE METER BOX

BOTTOM PCB

TOP PCB

—_ | —

Adafruit HUZZAH32 ESP32
Feather

J—

12V CONNECTOR

VOLTAGE STEP-UP

1:2

STANDOFFS

M2.5x20 + 6mm

STANDOFFS

M2.5x6mm

STANDOFFS

M2.5x15 + 6mm

STANDOFFS

M2.5x6 + 6mm

IN-16 NIXIE TUBE

TOP/COVER BOARD

@M_.O\O(DNO\CN B WIN|—

YELLOW_LED

W|— O [OOf |00 (—|—

NOTES

CONFIRM TEST DATA WITH PHONEWAVE -
READINGS POSITIVE AND MAKISE TIME DILATION
EFFECT. PUSH NEW DIMENSIONS TQ D.AS.H.
FRECTA M — S EERT %

S, 1ERdS & OIS REEEE
5, DASH.IZEHLILVRTET v a

SOLIDWORKS Educational Product. F0|25tructional Use Only.

DWG NO.

1OF8

VERSION

1.0

PART

DIVERGENCE METER

AUTHOR(S)

[EEE fmAER (LM 001)
RYAN KISSINGER

FUTURE GADGET LAB

WESTERN DIVISION - SITE 117

- 150.0 -
- 140.0 - 850 —*
k____‘ e £ 30° w - e - %
75.0 67.5 | | | B
2501 | [C
e] B
— D5 e ®]5-D.,._ B 2.5
- 160.0 -
NOTES
= [121.0] - UNLESS OTHERWISE SPECIFIED:
, \ 1. ALLDIMS. IN MILLIMETERS
! T i e 1 2. TOLERANCES:
. XX 1.0
| m)) BN 3. BREAK SHARP FDGES 1.0
2 LAY, '
85.0 £5.0[44.0] - - - A
| | A M2.550.45
| : - - - - +_ , Topped Hole
! E10M|A|B|C
e _ _ _ _ _ _ _ _ _ _ |
¥ . w,
NOTES DWG NO. | 20F 8
COMFIER TERT DATA WATH PHOMEWAMWE - ‘ll,l.l"E RS |D N 1
. READIMGE POSITIVE AMD MAKIZE TIME DILATICMN
2-3 EFFECT. PUSH NEW DIMENSIOME TO DASH. PART ROX ENCLOSURE
BRETTALR T2 TR &
M5, [FRs SURRREE AUTHOR(S) | 36 fakBE (Lm 001 [FUTURE GADGET LAB
R, DASHERLLPOTET Y a RYAN KISSINGER WESTERN DIVISION - SITE 117

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.

- 140.0 - —= =50
l] B
MOTES

URNLESS OTHEREWISE SFECIFIED:
@15.0 1. ALL DIMS, [N MILLIMETERS

2. TOLERAMZES:

ra o+ 10

750 ANGLES £ 5°
L] 2. BEEAK SHAEF EDGES 1.0
MK,
25.0
| Lo L
1:1
NOTES DWG NO. | 3QF 8
CONFIRN TEST DATA WITH PHOMEWAWVE - VERSION | 1
READIMGE PASITIVE AMD MAKISE TIWE DILATION
EFFECT. PUSH NEW CIMEMSIONE TO DASH. PART BOARD, BACK
B TF AL TR TR &-
Tegh: N AUTHOR(S) | M3 fakBs (Lv 001D |[FUTURE GADGET LAB

B, DASHERLORTET 222 RYAN KISSINGER WESTERN DIVISION - SITE 117

SOLIDWORKS Educational Product. Fulzstructiunal Use Only. .l

NOTES
UMLESS OTHERW ISE SPECIFIED:
1. ALL DIMS, IN MILLIMETERS
2. TOLERAMNCES:
X4+ 1.0
/5.0 ANGLES £ 5°
3. BREAK SHARP EDGES 1.0 MAX,

— 700 - —e 50
1:1
NOTES DWG NO. | 4A0OF 8
COMFIEM TEST DATA WATH PHOMEWANE - ‘ll,'.l"E RS |DN 1
READIMGE POSITIVE AMD MAKIZE TIME DILATICMN
EFFECT. PUSH NEW DIMEMS IONS TO DASH. PART BOARD, LT + RT
BRETTALF—8 EREET &-
M5, [DRs SUMREEE AUTHOR(S) | M3 kB (v 001 |FUTURE GADGET LAB
B, DASHEFLOPGCET > Y2 RYAN KISSINGER WESTERN DIVISION - SITE 117

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.

/5.0

OTES

ALL DIMS. TN MILLIMETERS

MOTES
]UNLESS OTHERWISE SPECIFIED:
2. TOLERAMNCES:

A0 1.0
AMNGLES £ 5°

3. BREAK SHARP EDGES 1.0 MAX,

HER, DASHICEHLLTEE Fwira

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.

RYAN KISSINGER

- 140.0 - = =5[]
1:1
NOTES DWG NO. | 5OF 8
COMNFIRM TEST DATA WITH PHONEWAVE - VERSION | 1
READINGE POSITIVE AND MAKISE TIME DILATION
EFFECT. PUSH NEW DIMEMS IONS TO DASH. PART BOARD, FRONT
EBRTTART R EHEET &-
A oy AUTHOR(S) | mzs facks (Lv 001y |FUTURE GADGET LAB

WESTERN DIVISIGN - SITE 117

- 140.0 ~]
> ‘ ‘ MNOTES
1 | | | | | | UNLESS OTHERW ISE SPECIFIED:
[. : : H—— : : : . 1 1. ALLDIMSE, IN MILLIMETERS
20 57 0] ANGLES + 5°
- 1210 - *
— 3. BREAKSHARPEDGES1.0MAX. | B
- 100.0 -
SN.0M|AB|] e [(00}— 3 85,00 050
Looo
4% 6.0 MIN | B e
\ - Elos00) | A B|C
>- P &x B15.0 MIN
i x} = W ~ O'/;m@,ﬂlac
A \ f he A | '
! w _\J \.\./ K\/ __/ w ! 15.0]£0.0
65.0[46.0] - - - + - - - j
i . B
! o _ o _ . é
L
Y ' '
A 40,0 - 1:1
40.0
NOTES DWG NO. | 6 OF 8
COMFIEM TEST DATA WATH PHOMEWANE - ‘Il,'.I"E RS |DN 1
READIMGE POSITIVE AMD MAKIZE TIME DILATICMN
EFFECT. PUSH NEW DIMENEIONS TO D.AS.H. PART TOP/COVER BRARD
BRETTALR T2 TR &-
BT, TFHRs & UWSREER AUTHOR(S) | M3 kB (v 001 |FUTURE GADGET LAB

HER, DASHICEHLLTEE Fwira

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.

RYAN KISSINGER

WESTERN DIVISIGN - SITE 117

G000

15.00

.00

N ® S

P

B 135.00 -
a7.50 5750
h 4C.00 | 40.C0 ;
10,00 | 10,00 10,00 | 10k 1000 [20,00
/g {

W !.-.Lr,l' et lr[_!l!‘-.;_" I .,_

T
FLUTL =™ GASAMT LASG2ATORY

WIRTRHEY ZSH N7

i ..‘- L]
00 E IS5 LGS !r A Eolsv R R 1 Py &
200 I—‘LEL_
13500

NOTES

COMFIEA TEST DATA WAITH PHOMEWANE -
READIMGE POSITIVE AMD MAKISE TIRE DILATION
EFFECT. PUUEH MEW DIREMSIOME TO DLAEH.
BRTTALT 2 EHEREY &-

BAse. 1B 4RSS
HEE, DASHIZEHLLEEEF v ia

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.

DWG NO. | 70F 8
VERSION |1
PART | UPPER PCB
AUTHOR({S) | MR fRrARS (LM 001 [FUTURE GADGET LAB
RYAN KISSINGER WESTERM DIVISION - SITE 117

N

T

1| N
- B

e

”""I'E.."'

M.I:I.'$':'

o -

S 3 @

o T « G

@0 o - £

;e

]

o O

H.. o'-

K . il D

I o : USE A
%.I 3 |])

-_E_EQ—‘ 60.00

]
1

NOTES DWG NO. | 80F 8
COMFIRM TEEST DATA WATH PHOMEWAWE - VE RS'DN "I
READIMGEE POSITIVE AMND MWAKISE TINME DILATICMN
EFFECT. PUSH MEW DIMENSIONS TO D.ASH. PART LOWER PCR
EETF AT RS &
M5, [FRs SURRREE AUTHOR(S) | 36 fakBE (Lm 001 [FUTURE GADGET LAB
HE. DASHEFLORTET ¥ a RYAN KISSINGER WESTERN DIVISION - SITE 117

SOLIDWORKS Educational Product. Fulzstructiunal Use Only.]

FUTURE GADGET LAB
WESTERN DIVISION - SITE 117

SOLIDWORKS Educational Product. ForZstructional Use Only.]

Appendix C: Electrical Schematics

42

]] [}]
14X027T2S¢E 1IM0ZTZSE “ ! 1dA02T2SE 1dX02T¢S¢E ! ! 1dX02TESE 1dX02T2se
— s _ “ £y d=| | “ 5 9y
2 T 2 T o ! ! < T 2 T ! ! 7 T
)) ™ < | | Ty) < b o
+> m V_ m +> m V_ (8]]] +> (8] V_ 8] +> [8] V_ Q [}] +> (8] I [8] +> (8] I 8]
T T 2 1 1 = T = =z T = 1 1 b= W = = V =
X X X oo X X X X oo ¥ X x °
— o [} [} — o [} [} vﬁ
| o < o o < o 1 1 1 1 — o
T m m H_ m O | | M, W < W M_ W < W | | S_ W < W S, W < W
o e o e) 2 c :) e 20 B ¢) c :
[} [}
b L
]] |]
L L
1 1
[} [} [} [}
@] n)| | <t =i O D] L) | <t | | [Ze] [+2]
lalalelelslalslels) lalelelelalalslsle) ! ! falalalslalslalele lalelelelelala’s)s) ! ! Yalalelalalelels) Folalalalslalalalale
CHNO T OO CHANMTW O oD “ “ O NM IO~ DOD CHNMSW MDD “ “ O NMT DN DD OHNMTWNE~D D
= = [} [} = = [} [}
e g 2 g 1 2 2
m L& Nal — [{=] L] Q0 L}]] hos <L m QO — Te) Lm0 — —
O N o o I © = © T | 3] s =~ 3 e m
| | -
|| r~| <t ™| W r~| =t “ “ M| | r~| =t ™| 0| r~| =t “ “ 3674_’ m| | r~| <
b L L
1 1 1 1
1 1 1 1
[} [} [} [}
[} [} [} [}
o o
S S
la 1 1
| b 1S L E
) “ “ ID] | 1 1]
|]
1 1
m [euf o) <[of o | co 1 1 Q | o e =+ |)| | | 0o “ “ W i | o] =rf | o rf co
= [} [} - | | -
WU_ AN S W0 “ “ m ML ~0 ! ! «© AN s WD W
m GooocoooE | | m eoococoE \ | d|o5886662
U]
% Q B8 “ “ % [a i B “ “ m an
Q0 | | o O w0 | 1 L0
Q CDSEEHRT Q D2 8 0Ly
I SBARBEGES " " == S38BEHES ! " m S3EBEHES
~ A]] ~ 1] ~
(o) 1 1 -]
E I R E Lo ERE kR E L mmumnumgH
[} [}
[9]
- _ _ _ _ 2
< | 1
~ 1 1 A “ “ A
JDA ! ! 20A I I 20A
......................... I Sl U O S S I
oo el
a 2% _ K
o wlw 1 1
1 D_
1] | G !
1 | ! y !
_ _ S 1 |
] | —
_ ! ! Za31 2y 57d o 9N |
| _
H] | 1 1
“ " _E 0s oot 1 N 1
| T _m_ - = | 1 ™) ouf = - |
! L o 12 s | 9| |
b felwlsdalala |5 a3 w05 b > |
I [elsiclelele] INNTNN- INE o 282z
1 — 1 | + o 1
“ <EXuo “ I €a37 gy S7d W o n_uG |
I roQuy | o! ! 3 !
\ A_NmUV | | | + 1
1 DLCPN 1 e 4
I |
L e e e e e - = |

43

A

135.00

|

67.50

7.00

10.00

10.00

40.00

!
|

!
|

10.00

67.50

!

!

40.00

10.00

10.00

10.00

7.00

7.00

“""““"“"""""""“"“".3521:20KFT"-""""“"-“""“'.".-"35'2'1.2'0K'F'T 352.120KF.T 3.5 .24]:.20K.F.TF 35.2.1.26K.F:F...............................35.21.20KF:1:
* = 3= g N —— A=
D 4 W e | V. BBV . ERANES

15.00

60.00

3'_, A .:?_',,7
Tfér!j' N K A= A1 P EL PSY KONGROQ
l 5
I

FUTURE GADGET LABORATORY

WESTERN DIVISION 117

PROPERTT O

-
7 , N ‘
== =117 a4
== = S . (&
R SZl 4) iV % v’ A "‘

':‘IV“\‘ iy > N ~) . =
AR/ I/ o,
RIEF D 446 N\FSE5#, 115

7.00 7.00
' 135.00 = :\

44

7.00
7.00

7.00

| |
| |
| JP3 VCC AN I
' PINAQ 1 2 VCC '
: PINA1 38 84 GND |
| PINA? 55 Q6| PiNi3 |
: o9 i =
' PINAS 11o 012 GNL !
I O 014 SDA GND |
: g cbe :
| O O |
| |
| [
| |
| |
| |
21 RST
| Wous = N :
| RX SDA |
| NCX—MlSO RX SDA SCL P2 |
| Yoe| Miso sCL |- = |
| = Mosl 14 =3 20 CLOCK |
| He 2 20| o '
| AS 1 a3 33 |32 45 | PULSE |
| 221 n2 27 [20 | bivLED |
| o AL 12 5 O PIN21 3pq |
' nc | 29 13 I"Use 1 '
| NCXW NC USB EN ZO +5V 1
' 3 GND EN —=—Xnc 20| +sv |
| neX—3Y 1 3y BAT 2AL xne J___O GND |
| GND vee GND |
L e e e e e e e e e e e e e e e e M e = d
] r--T-TTTT T TTTTTTTTTTTTTTTTTTTTTTTT T TSI TETITIT TS T T TS A
| [|
| I 1 |
1 VCC /I\ o 8 |
| I = /N |
|) n c1 :
7805TV
I I I EEE-FK1E221GV 5V, 1A l
| ;:C3 ;:CZ | 1 12v_src v wvo B |
| 10uF OuF 11 222202 ey C5 GND ca c6 |
| o 01 “ T I
| _ Lo 1uF 0.1uF 22uF |
| _L | | 12v_SRC=2 s $ s |
I GND - GND |
L e e e e e e e e e — d b, e, e e e e e e 4
7.00
N - ’ 7805TV 22-23-2021
- C SN :
(4
’ /o007 108
= 3
sHCP @
sTCP -_0‘_ [,.\\3
= | Vel
DSEE Va ‘
(Y
o g
o @)
S :
o GN
e E
™
al
0))
L
USB-A JF
S I _|
=
N ' -

Appendix D: Full Proaram Code

Click this link for the attached .1no file:

#include "Arduino.h" ”‘J
#include <stdio.h> E|PsyKongroo_in0
#include <math.h>
//
//
// NAME : Divergence Shifter Clock
//
// : FUTURE GADGET LABS, Western Office
//
//
//
// AUTHOR : Ryan Kissinger, Jason Keller
//
// : r.kissinger68@gmail.com
//
// : https://autononymous.github.io/index.html/
//
//
//
// DATE : 16 January 2020
//
//
//
// VERSION : 2.31 (First)
//
//
//
// DEVICE : ESP32-WROOM32 MODULE (Adafruit)
//
//
//
//
//
// NOTES : [MODE 1A: CLOCK]
//
// : Clock section runs on the millis() function, which
//
// : keeps an active tabulation of the time since the
//
// : program has started running. Seconds are converted
//
// : into minutes, then hours, and each digit is extracted
//
// : and converted into binary, for use in the 74HC595
//
// : Shift Register module.
//
//
//
// : [MODE 1B: DIVERGENCE HOUR CHIME]
//
// : Are you on the right worldline? At the top of each
//
// : hour, Gate of Steiner plays and the divergence meter
//

46

https://autononymous.github.io/index.html/

//
//
//
//
1/
//
/7
//
//
/7
//
/7
//
//
/7
//
/7
//
1/
//
//
//
//
/7
//
//
//

//
//
//
//
/7
//
//
//
//
/7
//
/7
//
//
1/
//
/7
//
/7
//
//
1/
//
/7
//
/7
//

shows the current worldline.

[MODE 2: CONSTANT DIVERGENCE]
When a connected switch is TRUE, the divergence meter

is constantly shown. (To be added)

[LICENSE]
This file is Copyright 2020 by Ryan M. Kissinger and
released under the Lesser GNU Public License, version
2. It intended for educational use only, but its use
is not limited thereto.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-
TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIR-
ECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//==
//
//
//

//
PINOUTS
//
//

/7

32 - Latch Pin, or STCP on the 74HC595.
14 - Clock Pin, or SHCP on the 74HC595.
15 - Data Pin, or DS on the 74HC595.

47

// 12 - Pulse Pin, driving the two top-mounted LEDs
//

// that act as separators for the hour, minute,
//

// and second places.
//

// XX - Divergence Pin, driving the LED separating the
//

// ones place of the active worldine.
//

// 27 - Buzzer Pin, driving the speaker.
//

//
//

/ /== ============================== =
//

// CREDITS [shiftOut MODULE 1.0]
//

// Carilyn Maw & Tom Igoe
//

// 25 October 2006
//

/ JR— JR— — J— — ————— e JR— — e ——
//

// RELEVANT DOCUMENTATION is listed at the bottom of this code.
//

/ /== =
//

/ /== == = == = = == =

/ /== ===[VARIABLE DEFINITIONS

]==== == == ====|

/ /==

)/ -—=== [Defining music note frequencies]----- //

#define NOTE C4 262 // "middle C"

#define NOTE_CS4 277

#define NOTE D4 294

#define NOTE DS4 311

#define NOTE E4 330

#define NOTE F4 349

#define NOTE FS4 370

#define NOTE G4 392

#define NOTE_GS4 415

#define NOTE A4 440

#define NOTE AS4 466

#define NOTE B4 494

#define NOTE C5 523

#define NOTE CS5 554

#define NOTE D5 587

#define NOTE_DS5 622

#define NOTE E5 659

#define NOTE F5 698

#define NOTE FS5 740

#define NOTE G5 784

#define NOTE GS5 831

#define NOTE A5 880

#define NOTE_ASS5 932

48

#define NOTE B5 988

[/=== [Defining music note frequencies]----- //

static int latchPin = 32;

static int clockPin = 14;

static int dataPin = 15;

static int pulsePin = 12;

static int buzzerPin = 21;

static int incPin = 26; // or Pin AO

static int decPin = 25; // or Pin Al

static int statusPin = 99; // Status of time change mode (27)

static int divPin = 27;

static int timebuf = 1;

//--—--= [Time variables]----—-———-—"—""""“"--——-————— //

// Below are the binary values for time.

//

// TENS ONES
byte dataH; // Hour XXXX XXXX

byte dataM; // Minute XXXX — XXXX

byte datasS; // Second)0.9:0:¢)0.9:0:¢

int currenttime; // Time extracted from the millis ()
function.

double mil[2]; // Records previous and last time state.
double d mil; // Calculates time change from (mil[1] -
mil([0]).

double T msec; // Time in milliseconds. Used for pulsing
of LEDs and music score timing.

int pulseglow; // Holds the active value for PWM cycle of

the blinking time separator LEDs.

double T sec act; // Active time in seconds.

double T secs; // Time in seconds: {0 <= T secs <= 59}.
int T s ones; // Seconds ones' place.

int T s tens; // Seconds tens' place.

double T mins; // Time in minutes: {0 <= T mins <= 59}.
int T m ones; !/ Minutes ones' place.

int T m_tens; // Minutes tens' place.

double T hrs; // Time in hours: {0 <= T hrs <= 23}.
int T h ones; // Hours ones' place.

int T h tens; // Hours tens' place.

double T days; // Counter for number of days passed/
double Gmult = 1; // Timer that slows or accelerates BPM of
song.

[/ ===== [GATE OF STEINER Notes]-----—-—--—-—-—-—-- //

// 4/4 time , 76 BPM or 789ms/beat

double GOS duration[13] =

{100*Gmult,591*Gmult,1183*Gmult,1578*Gmult, 2169*Gmult,2761*Gmult,2958*Gmult, 3156*Gmult
,3747*Gmult, 4339*Gmult,4734*Gmult, 5420*Gmult, 6000*Gmult};

// C5 Bb4 Eb5 c5 Bb4 G4 Ab4
Bb4 Ab4 Eb5 G4 Ab4

49

double GOS highnote[13] =
{NOTE_C5,NOTE_AS4,NOTE DS5,NOTE C5,NOTE AS4,NOTE G4,NOTE GS4,NOTE AS4,NOTE GS4,NOTE DS
5,NOTE_G4,NOTE_GS4,0};

/=== [Song variables]------———-—————————————~- //

bool EstablishSongStart; // Boolean returning if song has started.

bool SongEnd; // Returns of song has ended or not

double SongStart; // Start time calculated from when first run
double SongTime; // Song time relative to the start of the song
double NextNote; // Unused

double NoteTime; // Value pulled from GOS duration|]

int ActiveNote; // Which note is currently active

[/ ===== [Divergence Mode] ———=-=—=—=—-——————————— //

// 0-9 regular numbers, 10-16 nothing

int DivMode SO[20] = { 16 , 16 , 16 , 16 , 8 , 1, 6, 2, 5, 2, 2, 1, 0
141 ll 7! OI 21 3! l};

int DivMode ST[20] = { 16 , 16 , 16 , 16 , 9, 7, 6, 4, 1, 9, 1, 0, 6
y 2, 2, 1,16, 8, 1, 01};

int DivMode MO[20] = { 16 , 16 , 2, 5, 3, 0, 6, 8, 6, 4, o6, 1, 5
IOI 5/ 4! 8/ 5/ 7! 4 };

int DivMode MT[20] = { 16 , 16 , 16 , 2, 2, 2, 6, 3, 0, 3, 7, 0, 5
;6 4, 2, 16 , 4, 3, 8 }7

int DivMode HO[20] = { 16 , 16 , 4, 7, 16 , 5, c, 0, 88, 3, o6, 1, 3
r 9, 9, 6,16, 3, 6, 51};

int DivMode HT[20] = {16, 1, 8, 3, 4, 1, 6, 1, 3, 0, 7, 0, 6

’ 6 ’ O 4 3 ’ 9 r 1 4 8 ’ 9 };

int DivNumber = 0;
//===== [Program variables]-—----——--——--—————-——--—- //
int OpMode; // Determines whether showing time or

playing song

int BothPressed;

int DecPressed;

int IncPressed;

int TimeMode;

bool ChangeTime;

bool DoublePress;

bool DecPress;

bool IncPress;

double PressButtonBuf;
int T 0 = 0;

bool SecondPassed = false;
double T msO = 0;

bool MSPassed = false;
double currentms = 0;

/ /=== - -—= ——= - —=—mmem= - - === ===

/ /=== == - === [MAIN PROGRAM
] |

void setup ()

{
pinMode (latchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
pinMode (dataPin, OUTPUT) ;
pinMode (divPin, OUTPUT) ;
pinMode (33,0UTPUT) ;
ledcSetup(1,500,8);

ledcSetup(2,200,8);
ledcAttachPin (pulsePin, 1);
ledcAttachPin (buzzerPin, 2);
pinMode (incPin, INPUT) ;
pinMode (decPin, INPUT) ;
pinMode (statusPin, OUTPUT) ;

Serial.begin (9600) ;

// Hour Minute Second

T sec_act = (11*3600) + (20*60) + (02); // This 1is the starting time for
the clock at boot.

mil[0] = 0;

T days = 0;

pulseglow = O;

OpMode = 1;

EstablishSongStart = false;
SongEnd = false;

BothPressed = 0;
DecPressed = 0;
IncPressed = 0;

TimeMode = 0;
// 0 No time adjust
// 1 Selecting quantity to change
// ... Back to 0

ChangeTime = 0;

DoublePress = 0;
DecPress = 0;
IncPress = 0;

PressButtonBuf = 0;
}

void loop ()
{

//Calculating the current time:

currenttime = millis () ;
mil[l] = mil[O0];
mil[0] = currenttime;

double d mil = mil[0] - mil[1];

T sec act += d mil/1000;
PressButtonBuf += (d mil/1000);
T days = (int) (T sec_act/3600)/24;

T hrs = T sec_act/3600;
while (T _hrs > 24) // Keeps hours
under 24
T hrs -= 24;
T h ones = (int) ((int)T hrs % 10);
T h tens = (int) (((int)T_hrs/10) % 10);

T mins = T_sec_act/60;
while (T mins > 60) // Keeps minutes
under 60
T mins -= 60;
T m ones = (int int)T_mins $ 10) ;
T m tens = (int (int)T mins/10) % 10);

T secs = T sec_act;

[&7]
—_

while (T secs > 60)

under 60
T secs —-= 60;
T s ones = (int) ((int)T _secs % 10);
T s tens = (int)(((int)T_secs/lO) $ 10);
if (T _s ones != T 0)
{
SecondPassed = true;
}
else

SecondPassed = false;
T 0 =T s ones;

T msec = T sec act*100;

while (T msec > 1000)
T msec -= 1000;

currentms += d mil;
if (currentms >= 200)
{
MSPassed = true;

currentms = 0;

else
MSPassed = false;

//Switching to OpMode 2 if at the top of the hour
/*

if ((T_s ones == 0) && (T _s tens == 0) && (T _m ones ==

OpMode = 2;

/=== [Definition of Button Presses]-------------

bool dec = digitalRead(decPin);
bool inc = digitalRead (incPin);

// Defining double press
if ((dec == 1) && (inc == 1))
BothPressed += 1;
else
BothPressed =
if (BothPressed >= 10)
{

DoublePress = 1;
DecPress = 0;
IncPress = 0;
BothPressed = 0;

}
// Defining decrement press
if ((dec == 1) && (inc == 0))
DecPressed += 1;

else
DecPressed = 0;
if (DecPressed >= 10)
{
DoublePress = 0;
DecPress = 1;
IncPress = 0;

0)

&&

// Keeps seconds

(T m tens ==

))

DecPressed = 0;
}
// Defining increment press
if ((dec == 0) && (inc == 1))
IncPressed += 1;
else
IncPressed =
if (IncPressed >= 10

{

DoublePress = 0;

DecPress = 0;

IncPress = 1;

IncPressed = 0;

}

//Serial.print ("Dec | "); Serial.print (DecPress); Serial.print(" | Inc | ");
Serial.print (IncPress); Serial.print(" | Both | "); Serial.print (DoublePress);
Serial.print ("™ | ");
Serial.print (DecPressed) ;Serial.print (IncPressed) ;Serial.println (BothPressed);
//Serial.print ("Dcp | "); Serial.print (DecPressed); Serial.print ("™ | Icp | "™);
Serial.print (IncPressed); Serial.print(" | Botp | "); Serial.println(BothPressed);
/] —mmmm——— [Time Change Mode]-----------

if (ChangeTime == 0)
{
digitalWrite (statusPin, 1);
if ((TimeMode == 0) && (DoublePress == 1) && (PressButtonBuf >= timebuf))
{
TimeMode = 1; // Start changing the time
DoublePress = 0;

}

else if ((TimeMode == 1)) // If in change time mode,
{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))
// and incremented, go to Minutes
{
TimeMode = 2;
IncPress = 0;
PressButtonBuf = 0;
}
if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
TimeMode = 3;
DecPress = 0;
PressButtonBuf = 0;

}
if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

{
ChangeTime = 1;
PressButtonBuf = 0;
DoublePress = 0;
digitalWrite (statusPin, 0);

}

else if ((TimeMode == 2)) // If in change time mode,

{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))

// and incremented, go to Minutes
{

37

0;

TimeMode
IncPress

}

PressButtonBuf = 0;
}
if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
TimeMode = 1;
DecPress = 0;
PressButtonBuf = 0;
}
if ((DoublePress == 1) && (PressButtonBuf >= timebuf))
{
ChangeTime = 1;
PressButtonBuf = 0;
DoublePress = 0;
digitalWrite (statusPin, 0);

}

else if ((TimeMode == 3)) // If in change time mode,
{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))
// and incremented, go to Minutes
{
TimeMode = 1;
IncPress = 0;
PressButtonBuf = 0;
}
if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
TimeMode = 2;
DecPress = 0;
PressButtonBuf = 0;
}
if ((DoublePress == 1) && (PressButtonBuf >= timebuf))
{
ChangeTime = 1;
PressButtonBuf = 0;
DoublePress = 0;
digitalWrite (statusPin, 0);

else if (ChangeTime == 1)

{

if ((TimeMode == 1))
{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))
// and incremented, go to Minutes
{
T sec_act += 1;
PressButtonBuf = 0;
}
else if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
T sec act -= 1;
PressButtonBuf = 0;

}
else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

{
ChangeTime = 0;
PressButtonBuf = 0;

DoublePress = 0;
if ((T_s ones == 1))

digitalWrite (statusPin, 1);

else
{
digitalWrite (statusPin, 0);
}
}
else if ((TimeMode == 2))
{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))

// and incremented, go to Minutes
{
T sec_act += 60;
PressButtonBuf = 0;
}
else if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
T sec_act -= 60;
PressButtonBuf = 0;
}
else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))
{
ChangeTime = 0;
PressButtonBuf = 0;
DoublePress = 0;

if ((T_s ones == 1) || (T_s ones == 3))

digitalWrite (statusPin, 1);

else
{
digitalWrite (statusPin, 0);
}
}
else if ((TimeMode == 3))
{
if ((IncPress == 1) && (PressButtonBuf >= timebuf))

// and incremented, go to Minutes
{
T sec_act += 3600;
PressButtonBuf = 0;
}
else if ((DecPress == 1) && (PressButtonBuf >= timebuf))
// and decremented, go to Hours
{
T sec_act -= 3600;
PressButtonBuf = 0;
}
else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))
{
ChangeTime = 0;
PressButtonBuf = 0;
DoublePress = 0;
}
if ((T_s ones == 1) || (T_s ones == 3) || (T s ones == 5))
{
digitalWrite (statusPin, 1);

55

digitalWrite (statusPin, 0);

IncPress = 0;
DecPress = 0;
DoublePress = 0;

//1f clock mode is currently active

if (OpMode == 1)
{
DivNumber = 0;

dataS = GetBinary ByteForm(T h ones, T h tens);
dataM GetBinary ByteForm(T m ones, T m tens);
dataH = GetBinary ByteForm(T s ones, T s tens);

for (int j = 0; j < 1; J++)
{
digitalWrite (latchPin, 0); // Start listening
shiftOut (dataPin, clockPin, dataH);
shiftOut (dataPin, clockPin, dataM);
shiftOut (dataPin, clockPin, dataS):;
digitalWrite (latchPin, 1); // Stop listening
}

pulseglow = fabs(255 * (sin((3.1415)*(((double)T_msec)/ZOO))))

// NOTE: The function above creates a sinusoidal PWM with an amplitude of
255, period of 2 seconds,

// and the absolute value gives it the "bouncing" effect.

ledcWrite (1,pulseglow) ;

if (SecondPassed == true)
{
Serial.print
Serial.print _ones);
Serial.print ")

(T_h tens);

(T

("
Serial.print(T m_tens);

(

("

" h
_h

Serial.print(T_m ones);
Serial.print ")
Serial.print (T_s tens);
Serial.println (T s ones);

}

//if (T_s ones <= 5)

// digitalWrite (33,HIGH);
//else if (T_s ones > 5)
// digitalWrite (33, LOW) ;

//1f divergence mode is currently active (at the top of the hour)

if (OpMode == 2)
{

Ch
(@

if
{

}

(EstablishSongStart == false)

Serial.println("Song Started.");
SongStart = currenttime;
EstablishSongStart = true;
NextNote = 0;

SongTime = 0;

ActiveNote = 0;

digitalWrite (divPin, 1);

SongTime = currenttime - SongStart - 1000;
current song time

if

(SongTime > SongStart+GOS duration[ActiveNote])

time to play the note,

write the
//
//

/7

/7

//
/7

{

ledcWriteTone (2,G0S _highnote[ActiveNote]);

note HZ value to the channel,

ledcWrite (2,255);

then write to the buzzer pin.

ActiveNote += 1;

Increment to the next note

}

if

(ActiveNote > 14)

If we're at note fourteen

{
//

}
if

SongEnd = true;
the song is over
Serial.println ("Song ended.");

(SongEnd == true)

and if the song is over,

{

EstablishSongStart = false;

let it play again

SongEnd = false;

and make sure the song isn't over at the start

/7

//

}
if
{

OpMode = 1;

Go back to the clock
ActiveNote = 0;
NextNote = 0;
ledcWrite (2,0);

Make sure sound is off
digitalWrite (divPin, O0);

(MSPassed == true)

dataH = GetBinary ByteForm(DivMode HT [DivNumber],

DivMode HO[DivNumber]) ;

dataM = GetBinary ByteForm(DivMode MT [DivNumber],

DivMode MO [DivNumber]) ;

dataS = GetBinary ByteForm(DivMode ST [DivNumber],

DivMode SO[DivNumber]) ;

listening

for (int j = 0; j < 1; j++)
{
digitalWrite (latchPin, O0);

shiftOut (dataPin, clockPin, dataH);
shiftOut (dataPin, clockPin, dataM);
shiftOut (dataPin, clockPin, dataS):;

// Get
// If it's
//
// Start

digitalWrite (latchPin, 1); // Stop
listening

Serial.print (DivMode HT[DivNumber]) ;

Serial.print(".");

Serial.print (DivMode HO[DivNumber]) ;

Serial.print (DivMode MT[DivNumber]) ;

Serial.print (DivMode MO[DivNumber]) ;
1)
r

’

’

Serial.print (DivMode ST[DivNumber

Serial.println (DivMode SO[DivNumber]) ;

if (DivNumber >= 19)
DivNumber = 19;
else
DivNumber += 1;

/ /== ==[FUNCTIONS
]=== == |

byte GetBinary ByteForm(int Ones, int Tens)
Converts ones and tens place integers to 1 byte;

{
// binary form joining both nybbles together so

byte RB = (byte) Ones;
// we can pass a single byte into the 74HC595 for each
byte LB = (byte) Tens;

// of the hours, minutes, and seconds place
byte ByteForm = RB + (LB<<4);
return ByteForm;

}

void DisplayNumbers ()

{

}

void shiftOut (int myDataPin, int myClockPin, byte myDataOut) {
// This shifts 8 bits out MSB first,
//on the rising edge of the clock,
//clock idles low

//internal function setup
int 1=0;

int pinState;

pinMode (myClockPin, OUTPUT) ;
pinMode (myDataPin, OUTPUT) ;

//clear everything out just in case to
//prepare shift register for bit shifting
digitalWrite (myDataPin, O0);

digitalWrite (myClockPin, O0);

//for each bit in the byte myDataOut
//NOTICE THAT WE ARE COUNTING DOWN in our for loop
//This means that %00000001 or "1" will go through such
//that it will be pin QO that lights.
for (i=7; 1i>=0; i--) {

digitalWrite (myClockPin, O0);

//1if the value passed to myDataOut and a bitmask result
// true then... so if we are at i=6 and our value is
// %$11010100 it would the code compares it to %$01000000
// and proceeds to set pinState to 1.
if (myDataOut & (1<<i)) {
pinState= 1;
}
else {
pinState= 0;
}

//Sets the pin to HIGH or LOW depending on pinState
digitalWrite (myDataPin, pinState);
//register shifts bits on upstroke of clock pin
digitalWrite (myClockPin, 1);
//zero the data pin after shift to prevent bleed through
digitalWrite (myDataPin, O0);

}

//stop shifting
digitalWrite (myClockPin, 0);
}

/ /== == = == = = == =
//== ==[RESOURCES
]==== == === === == |
/ /==
/*

* Tom Titor (4Chan /a/ board) website and schematic:

* http://www.mindspring.com/~tomtitor/index.html

*

* Adafruit ESP32 HUZZAH32 Pinout diagram:

* https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-
feather.pdf?timestamp=1579493965

*

* Autononymous main page (further resources from me) :

* https://autononymous.github.io/index.html

*

* Music note frequencies (to compose your own songs):

* https://pages.mtu.edu/~suits/notefregs.html

*

*

// E1 Psy Kongroo.

Appendix E: Note-To-Frequency Lookup Table.

Freq Wave Freq | Wave Freqg | Wave
Note [Hz] [cm] Note Hz] (e Note [Hz] (e
Co 16.35 | 2109.89 C3 130.81 | 263.74 Ce 1046.50 | 32.97
C#o/Dby | 17.32 | 1991.47 | C#3/DP3 | 138.59 | 248.93 | C#¢/Db | 1108.73 | 31.12
Do 18.35 | 1879.69 D3 146.83 | 234.96 De 1174.66 | 29.37
D#y/Eby | 19.45 | 1774.20 | D#3/Ebs | 155.56 | 221.77 | D#¢/Ebe | 1244.51 | 27.72
Eo 20.60 | 1674.62 E3 164.81 | 209.33 Es¢ 1318.51 | 26.17
Fo 21.83 | 1580.63 F3 174.61 | 197.58 Fs 1396.91 | 24.70
F#y/Gby | 23.12 | 149191 | F#3/Gbs | 185.00 | 186.49 | F#5/Gbs | 1479.98 | 23.31
Go 24.50 | 1408.18 G3 196.00 | 176.02 Gs 1567.98 | 22.00
G*o/Aby | 25.96 | 1329.14 | G*3/AP3 | 207.65 | 166.14 | G*¢/Ab | 1661.22 | 20.77
Ao 27.50 | 1254.55 A3z 220.00 | 156.82 A6 1760.00 | 19.60
A*o/Bby | 29.14 | 1184.13 | A#3/Bb3 | 233.08 | 148.02 | A#s/Bbs | 1864.66 | 18.50
Bo 30.87 | 1117.67 B3 24694 | 139.71 Be 1975.53 | 17.46
C1 32.70 | 1054.94 Cq 261.63 | 131.87 Cs 2093.00 | 16.48
C#1/Dby | 34.65 | 995.73 | C#4/Dby | 277.18 | 124.47 | C#7/Db; | 2217.46 | 15.56
D1 36.71 | 939.85 D4 293.66 | 117.48 D7 2349.32 | 14.69
D#;/Eb; | 38.89 | 887.10 | D#4/Ebs | 311.13 | 110.89 | D#7/Eb; | 2489.02 | 13.86
E1 41.20 | 837.31 E4 329.63 | 104.66 E7 2637.02 | 13.08
F1 43.65 790.31 F4 349.23 | 98.79 Fr7 2793.83 | 12.35
F#1/Gb1 | 46.25 | 745.96 | F#,/Gby | 369.99 | 93.24 | F#;/Gb; | 2959.96 | 11.66
G1 49.00 704.09 Ga 392.00 | 88.01 G7 313596 | 11.00
G*1/AP1 | 5191 | 664.57 | G*4/Abs | 415.30 | 83.07 | G*7/Aby | 3322.44 | 10.38
A1 55.00 627.27 Ay 440.00 | 78.41 A7 3520.00 | 9.80
A#1/Bby | 58.27 | 592.07 | A*4/Bby | 466.16 | 74.01 | A#;/Bb; | 3729.31 | 9.25
B1 61.74 | 558.84 B4 493.88 | 69.85 B~ 3951.07 | 8.73
C2 65.41 527.47 Cs 523.25| 65.93 Cs 4186.01 | 8.24
C#;/Dby | 69.30 | 497.87 | C#5/Dbs | 554.37 | 62.23 | C#3/Dbg | 443492 | 7.78
D2 73.42 | 469.92 Ds 587.33 | 58.74 Dg 4698.63 | 7.34
D#, /Eb, 77.78 443.55 | D#s5/Ebs | 622.25 | 55.44 | D*#g/Ebg | 4978.03 | 6.93
E2 82.41 | 418.65 Es 659.25 | 52.33 Es 5274.04 | 6.54
F» 87.31 395.16 Fs 698.46 | 49.39 Fs 5587.65 | 6.17
F#,/Gb, | 92.50 372.98 | F#5/Gbs | 739.99 | 46.62 | F#3/Gbg | 5919.91 | 5.83
G2 98.00 352.04 Gs 783.99 | 44.01 Gs 627193 | 5.50
G*;/Ab, | 103.83 | 332.29 | G¥s/Abs | 830.61 | 41.54 | G*s/Abs | 6644.88 | 5.19
Az 110.00 | 313.64 As 880.00 | 39.20 As 7040.00 | 4.90
A#;/Bby | 116.54 | 296.03 | A¥s5/Bbs | 932.33 | 37.00 | A#g/Bbg | 7458.62 | 4.63
B> 12347 | 279.42 Bs 987.77 | 34.93 Bg 7902.13 | 4.37

Table adapted from pages-mtu.edu [8].

60

Appendix F: Legal Disclaimer

DISCLAIMER

All material covered in this document, attached files, and included print assets 1s for informational
purposes only. I take no responsibility for what you do with this knowledge. I can not be held
responsible for any property or medical damages caused by the items described in this document. 1
advise you to check local laws and consult professional electricians/contractors for any project
mvolving electricity, construction or assembly.

The DIY and tutorial material taught throughout this publication and attached materials are solely
for informational purposes. By taking any information or educational material from this publication
and attached materials, you assume any and all risks for the material covered. You agree to
indemnify, hold harmless, and defend Ryan M. Kissinger from any and all claims and damages as a
result of any and all of the information covered.

By taking and/or using any informational resources from Ryan M. Kissinger, you agree that you will
use the information in this document i a safe and legal manner, consistent with any and all
applicable laws, safety rules, and common sense. You further agree that you will take such steps as
may be reasonably necessary or required by law to keep any information out of the hands of minors
and 1mmature and/or unqualified individuals.

You must accept that you and you alone are accountable for your safety, as well as the safety of others
i any endeavor. While the material in this document and attached sources is provided in hopes that
you construct your own project, you are ultimately responsible for verifying its applicability and
accuracy to your project. You are completely responsible for knowing your limitations of knowledge
and experience. If you do any work with high voltage power such as 120 or 240 VAC power wiring,
you should consult a Licensed Electrician.

Some illustrations do not depict safety precautions or necessary equipment, in order to show the
project steps as clearly as possible. These projects are not intended for use by individuals under the
age of 18. Use of these instructions and suggestions 1s at your own risk. Ryan M. Kissinger disclaims
all responsibility for any resulting damage, injury, or expense. It is your responsibility to make sure
that your activities comply with any and all applicable laws.

By proceeding in the manufacturing or assembly of this project, you agree that you have read and
understood this Disclaimer.

61

Works Cited

[1]
2]

[3]

[6]

[7]

[8]

[9]

J. Boos, "The Nixie tube story," in IEEE Spectrum, vol. 55, no. 7, pp. 36-41, July 2018.

G. Zorpette, "New life for Nixies [in digital clocks]," in IEEE Spectrum, vol. 39, no. 6, pp.
44-49, June 2002.

74HC595 Product Datasheet. Nexperia B.V., 2017, p. 1-5, 16-18 [Online]. Available:
https://assets.nexperia.com/documents/data-sheet/74HC HCTH95.pdf. [Accessed: 12-

February-2020]

National TTL Databook. National Semiconductor Corp., 1976, p. 1-4 [Online]. Available:
https://datasheetspdf.com/parts/DM5441 A.pdf?1d=866041. [Accessed: 12-February-2020]

ESP32 Series Datasheet. Espresslf Systems, 2019, p 1-4 [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.
[Accessed: 12-February-2020]

Adafruit HUZZAHS2 ESP32 Feather. Adafruit, 2019, p1-4 [Online]. Available:
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-
feather.pdf?timestamp=1581553421. [Accessed: 12-February-2020]

Zeyuan. Yan, NCHO100HV Datasheet. p 1-4 [Online]. Available:
https://elty.pl/pl/p/file/ca247d1 5186121 efcal90591a05a0 1{2/NIXIE-Power-Supply-
Datasheet-EN-v1.0.0.pdf. [Accessed: 13-February-2020]

B. H. Suits, Physics of Music - Notes, 1998. [Online]. Available:
https://pages.mtu.edu/ suits/notefreqs.html. [Accessed: 19-Feb-2020].

C. Maw and T. Igoe, Ardumo ShifiOut Reference, 25-Oct-2006. [Online]. Available:
https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/. [Accessed:
19-Feb-2020].

62

https://assets.nexperia.com/documents/data-sheet/74HC_HCT595.pdf
https://elty.pl/pl/p/file/ca247d15f86f21efcaf90591a05a01f2/NIXIE-Power-Supply-Datasheet-EN-v1.0.0.pdf
https://elty.pl/pl/p/file/ca247d15f86f21efcaf90591a05a01f2/NIXIE-Power-Supply-Datasheet-EN-v1.0.0.pdf

	Nixie Tube Clock Design
	ABSTRACT
	0. Introduction
	1. Initial Considerations and Bill of Materials
	1.1. SN74HC595 Bit-Shift Register
	1.2. K155ID1 Binary-to-BCD Chip
	1.3. Using Both ICs Together
	1.4. ESP32 Adafruit Featherboard
	1.5. NCH6100HV Voltage Step-Up

	2. Manufacturing
	2.1. Engineering Drawings
	2.2. Manufacturing

	3. Circuit Schematics
	3.1. Power Considerations
	3.2. PCB Separation
	3.3. IC Connections
	3.4. LED Connections
	3.5. ESP32 Connections
	3.6. PCB Design Considerations

	4. Program Code
	4.1. Table of Variables
	4.2. Setup/Initialization
	4.3. Time Control
	4.4. Defining a Proper Button Press
	4.5. HX711 and K155ID1 Interface: Program Side
	4.6. Time-Responsive LEDs

	5. Additional Features
	5.1. Music

	APPENDICES.
	Appendix A: Interfacing with Sloeber
	Appendix B: Engineering Drawings
	Appendix C: Electrical Schematics
	Appendix D: Full Program Code
	Appendix E: Note-To-Frequency Lookup Table.
	Appendix F: Legal Disclaimer

	DISCLAIMER
	Works Cited

