
1

Nixie Tube Clock Design
Ryan Michael Kissinger, BSME

ABSTRACT
This paper proposes a methodology to design, program, and manufacture

a working Nixie Tube alarm clock, comprehensively describing the design

process, necessary parts, and assembly methods used to develop the device.

READ THE DISCLAIMER IN APPENDIX F BEFORE PROCEEDING.

0. Introduction

After a long hiatus due to the efficiency of

high-powered LED displays, Nixie Tubes

have reemerged in public eye as a popular

device for tinkerers, engineers, and hobbyists.

This revolution is wrought not only by their

historical significance to early computers, but

also by their eye-catching neon aesthetic-- their

glass bulbs housing radiant filaments of

numbers, decimals, letters, and characters,

their planes of twisted wires illuminating with

a luminous neon glow

The history of Nixie Tubes dates back to the

1950s and 1960s, an era long before the

existence of low-powered LEDs, employed in

industrial and scientific automated equipment.

After its conception by a German-American

hobbyist, and later commercialized for public

use, the Nixie Tube has played pivotal roles in

American technological history, from moon

landings to Wall Street [1].

Through the hindsight of our privilege by

modern technology, it can be easy to regard

the Nixie Tube as an overcomplicated

solution to a simplistic problem. But before

low-power, efficient, light-emitting-diode

displays came into significance, the Nixie

Tube was a substantial breakthrough at the

time. The Numerical Indicator Experimental-

1 tube, shortened to the nickname “Nixie” for

understandable reasons, contains a set of

diodes in a glass tube containing neon gas.

The numerals are cathodes aligned in parallel

planes, and when a significant voltage

difference is observed, the surrounding neon

gas is ionized, affording Nixie tubes their

infamous glowing effect [2].

To engineers, hobbyists, electricians, and

artists, the Nixie Tube’s importance has been

reborn into culture through the pleasure of its

aesthetic. In modern pop culture, Nixie

devices have emerged in television and

movies. My personal inspiration for this

device arises from the Japanese time travel

anime Steins;Gate, in which the main

character Okabe Rintarou employs the use of

a 8-bulb, IN-12 Nixie device called a

“Divergence Meter” to numerically identify

the reality that he is currently on. This project

is the amalgamation of my passions for

mechanical, electrical, and computer science

engineering; a love letter to the major that has

captivated me since I first began my

educational journey.

This paper will systematically cover my

procedure of designing a Nixie tube clock,

exploring the following:

1. Initial considerations/parts selection;

2. Manufacturing drawings;

3. Circuit schematics;

4. Programming code;

5. Assembly and design;

6. Additional features.

2

1. Initial Considerations and Bill of Materials

Table 1.1 | Bill of Materials for creating a Nixie tube clock.

The following table covers the components necessary to make a single Nixie Tube clock. Further

description will highlight the purpose behind the selection of all specialized components.

Mechanical Components

Component Description Qty Example Source

M2.5 Standoff Set, 150-

pc

6mm, 10mm, 15mm, 20mm size;

Male-Female and Male-Male.
1 Amazon (Sutemribor)

Craft Wood Beam* ¼“ x 3” x 24” panels. 1 Online or craft store

Craft Wood Plane* Minimum area 5.5” x 2.5”. 1 Online or craft store

Wood Glue - 1 Online or craft store

Electrical Components**

Component Description Qty Example Source

SN74HC595D Bit-Shift Register, Surface-Mount. 3

K155ID1
Also known as К155ИД1 or

SN74155N: Binary-to-BCD driver.
6

ESP-32 HUZZAH Adafruit ESP32 breakout. 1 Adafruit

2x8 16-Pin Header Pin header for breakout. 1

1x3 3-Pin Header
Pin header for breakout. Purchase

in bulk by buying a pack.
Pack

Amazon, Mouser,

DigiKey

1x6 6-Pin Header
Pin header for breakout. Purchase

in bulk by buying a pack.
Pack

Amazon, Mouser,

DigiKey

R0805 50Ω 50Ω resistor. 3 Mouser, DigiKey

35211220KFT 20KΩ
20KΩ resistor for high-voltage

power.
6 Mouser, DigiKey

L7805CV 12V to 5V step-down converter. 1 Mouser, DigiKey

C0805 0.1μF 0.1μF 50V decoupling capacitor. 5 Mouser, DigiKey

C0805 10μF 10μF 50V decoupling capacitor. 3 Mouser, DigiKey

2.56mm x 2 Screw

Terminal

Screw terminal for high-voltage wire

connection from step-up converter.
1 Mouser, DigiKey

Female DC Plug 12V DC plug adaptor. 1 Amazon (UXCELL)

DC Power Cable 12V wall-plug power cable. 1 Amazon

NCH6100HV DC

Step-Up Converter
12V to 200V step-up converter. 1 Amazon

6PCS IN-14 Nixie

Tubes
Pack of 6 Nixie tubes. 1 Amazon

* Displayed in inches for convenience, since standard sizes are often sold with imperial dimensions. This project uses the SI metric standard.

** Make sure to purchase a wealth of extra components, as small components such as thick-film resistors and capacitors are incredibly easy to lose.

https://www.amazon.com/gp/product/B075K3QBMX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1

3

1.1. SN74HC595 Bit-Shift Register

The SN74HC595 is an 8-bit, serial-in, parallel

shift-out register that holds the 4-bit binary

values representing the digit on the Nixie tube.

This device is capable of transmitting a

numerical input over a serial connection into

a physical manifestation of the represented

number, opening and closing eight gates that

directly represent the bits of the binary

number. This device will be employed in

conjunction with the K155ID1.

Figure 1.1 | Pinouts for the SN74HC595, adapted

from Nexperia datasheet [3].

Pin Description

Vcc Power pin

GND Ground

DS / Serial Serial input.

OE̅̅ ̅̅ Output enable

(active when LOW)

STCP / RCLK Storage register

clock pin

SHCP / SRCLK Shift register clock

pin

MR Master reset (active

when LOW)

SRCLR̅̅ ̅̅ ̅̅ ̅̅ ̅ Shift register clear

QA- QH Bits 1-8, LSB to

MSB

QH’ Daisy chain out (to

next Serial connec.)
Table 1.2 | Pinouts for the SN74HC595.

What's important to observe is that the bits

transferred into the shift register through

Serial first enter the QA register, then are

procedurally shifted towards the QH.

Therefore, when we interface with this device,

the LSB will end up being the last shifted

value, housed in QA, and conversely, the MSB

will house the first shifted value (in QH). Any

further bit shifts will result in the QH bit being

shifted to the next shift register, into its QA

space.

Our end goal is to drive the nixie tubes. The

K155ID5 chip, which will be discussed next,

is the component that allows the 4-bit binary

number to be converted into a signal that

drives one number at a time. By daisy-chaining

three of the SN74HC595 chips together, we

have six available 4-bit binary numbers to

drive our six nixie tubes. We use the Serial,

RCLK and SRCLK to drive this process.

The STCP pin is the storage register clock

pin. When it is low, the device "starts listening"

for binary values to be introduced through the

Serial line. When we change it to high, the

device stops listening, then shifts the input data

to the output line.

The SHCP pin is the shift register clock pin.

The most important characteristic of this pin

is its behavior on a rising edge transition —

when it changes from low to high, all the values

in our shift register are shifted by one place.

QA is shifted to QB, QB to QC, and so on. The

value in QH is shifted through the QH' pin,

which connects to the next register's Serial

line, entering it into its QA position.

The Serial pin holds the data transferred from

the microcontroller: a single bit, zero or one,

low or high. The value in this register is shifted

in when the SHCP pin undergoes a rising edge

transition.

4

We observe this interaction in the above timing diagram table,

adapted from a Nexperia datasheet [3]. The SHCP and STCP line

share a relationship of one-half phase off from each other, as their

behavior is contingent upon the rising-edge transition. When the DS

(or Serial) pin receives a high signal, the SHCP pin receives a rising-

edge signal from low to high, and the SHCP pin is low, the device

processes the signal from the DS line and places it in the first

register (QA). When the STCP line transitions to high, it transitions

the input data to the output line and “stops listening” for new values.

The interplay between the STCP and SHCP line continues; each

rising-edge transition of the SHCP pin drives the original signal from

the DS pin one step further along the registers. Eventually, this signal

reaches the Q7s or QH’ line, and if the QH’ line is daisy-chained to

the next SN74HC595 DS line, that value is placed in its first register

position.

Figure 1.2 | Timing diagram for the SN74HC595, adapted from the Nexperia datasheet [3].

5

1.2. K155ID1 Binary-to-BCD Chip

The K155ID1 (also known as the К155ИД4

or the SN74155N) is a binary-to-BCD driver

that converts our 4-bit nybble
1

 of binary

numbers into a signal for the correct digit on

our Nixie tubes.

We observe on the pinout schematic that the

values 0-9 are represented. For this particular

chip (that only represents values 0-9), any

value greater than 9 (or 0x0110, binary ten)

results in no output. For convenience, we can

use these values as "dead outputs" when we

don't want to display a number
3

.

A specialized feature about this chip is that it

is directly intended for use with high-voltage

Nixie tubes (after all, the documentation

contains a Russian document from the cold

war era). The Logic Diagram shows us that

Zener diodes and PNP BJT logic is present in

the device. Since BJTs are present, the signal

obtained from our microcontroller is

segregated from the high-voltage connection

to the Nixie tubes running in excess of 200

volts. The segregation of these two voltage

lines ideally prohibits corruption of the

STM32 microcontroller, which runs on a

standard input of 5 volts, which is exactly the

same as the voltage provided over a Serial line.

Figure 2.3 displays the pinouts of the

K155ID1 chip for quick reference. The pins

marked A, B, C, and D represent the four

input bytes. According to the logic of Table

2.3, the 4-bit input corresponds to the

numerical outputs displayed. These ten

output lines, numbered 0 through 9, are

directly connected to the cathode wires of the

Nixie Tube. The Vcc line allows the bipolar

junction transistors in the integrated circuit to

“switch” between inputs.

1

 A “nybble” is four bits, or half a byte.

Table 1.3 | Binary input vs. output for the K155ID1

chip, adapted from the National Semiconductor

Corp. datasheet [4].

Figure 1.3 | Pinouts of the K155ID1 chip.

Binary
Input

Output
D C B A

0x0000 L L L L 0

0x0001 L L L H 1

0x0010 L L H L 2

0x0011 L L H H 3

0x0100 L H L L 4

0x0101 L H L H 5

0x0110 L H H L 6

0x0111 L H H H 7

0x1000 H L L L 8

0x1001 H L L H 9

(Over Range)3

0x1010 H L H L -

0x1011 H L H H -

0x1100 H H L L -

0x1101 H H L H -

0x1110 H H H L -

0x1111 H H H H -

6

1.3. Using Both ICs Together

Properly interfacing with the Nixie tubes

requires us to understand how the two ICs

communicate.

Although further programming description

will take place in Section 4, Figure 2.4

illustrates the procedure used to transition

binary values into numbers on the clock:

1. The numerical time is calculated

through use of the C++ program.

2. Each ones- and tens-place digit is

separated and stored into individual

values, and then converted to binary.

3. Binary pairs are concatenated into 8-

bit bytes for transference to the

SN74HC595 chip using the shift

operator.

4. The bit-shift operation takes place,

shifting all three bytes into place in the

SN74HC595 chip.

5. The information in the most

significant nybble and least significant

nybble are transferred to the K155ID1

chip. Each of these contain a 4-bit

binary number representing the digit

to display on the Nixie tube.

6. The high voltage signal through the

anode of the Nixie tube is open on all

cathode lines, except for the desired

number, causing the requested

number to glow.

Further description of the wiring diagram will

be provided in Section 3 (Circuit Schematics),

and program code for interfacing with both of

these devices will be provided in Section 4.

Figure 1.4 | Representation of the procedure to

extract digits from time and use both ICs to transmit

them as signals to the Nixie tubes.

7

1.4. ESP32 Adafruit Featherboard

The Adafruit ESP-32 Huzzah microcontroller

is an excellent featherboard for prototyping

purposes. To save time constructing the Nixie

tube clock, using a featherboard prevents us

from soldering thermal ground planes and

using a heat gun to solder intricate

components. Take, for example, the USB-to-

UART chip already present on the ESP32

feather —— with terminals nearly as small as

the width of a human hair, this process

requires specialized equipment beyond the

budget of a simple hobbyist. In an effort save

time, effort, and frustration, the featherboard

is employed in this design. In addition to this,

its power equates well with the requirements

of the project: with four distinct timer

channels, a sufficient number of additional

GPIO pins, and low power requirements and

power consumption, this makes the ESP32 an

excellent choice [5].

Using Sloeber, an IDE built off of the Arduino

workspace that packs a lot more power, we

can interface with the ESP-32 quickly to

prototype code. The procedure required for

installing Sloeber for the ESP32 can be found

in Appendix A, on Page 31.

1.5. NCH6100HV Voltage Step-Up

The NCH6100HV, designed by Yan Zeyuan,

supplies us with the voltage required to drive

the Nixie tubes. This step-up converter

accepts a 12V signal and amplifies it to 200V,

supplying the filament with enough power to

ionize the neon gas.

An important calibration is required to

accurately step the voltage up to 200 volts. On

the circuit board there is a potentiometer that

increases the high voltage output with respect

to the clockwise rotation angle. From the

starting orientation shown in Figure 1.5, my

module required at least a 270-degree rotation

to break 200 volts.

The test shown in Figure 1.6 allows us to

determine the correct calibration, as some

devices may differ depending on the voltage.

For a standard 12V input, specified by the Bill

Of Materials in Table 1.1, we can simulate this

voltage by using a DC power supply and

setting up a simple circuit to test this. Both

Figure 1.5 | Voltage step up potentiometer, adapted from the NCH6100HV datasheet [7].

8

GND terminals of the NCH6100HV are connected to their

respective ground and voltage lines; the input to the positive and

negative leads of the DC power supply, and the high voltage ground-

and-power to the rest of the circuit.

Iteratively turn the potentiometer half a quarter-turn at a time.

Warning—— For safety purposes, each time ensure total deactivation

of the input voltage line: turn off the DC power supply and disconnect

both leads before adjusting the potentiometer with a screwdriver.

Read and understand the disclaimer in Appendix F before

proceeding, and disconnect all voltage sources before handling

electrical devices.

The SHDN line, shown in Figure 1.6, can also be used to turn on or

off the output of the NCH6100HV. A high signal disables the high

voltage line, while a low signal enables it. This can be useful when

connected to a GPIO pin on the ESP32 module, especially since

Nixie tubes have a minimum reported life of approximately 5000

hours. Coupling the device with a motion detector could activate the

clock only when a viewer is present, saving power and ensuring longer

life of the tubes.

For further information on efficiency curves and power specifications,

reference the datasheet.

Figure 1.6 | Standard NCH6100HV voltage test setup.

VIN

GND

HVOUT

GND

SHDN

DC

+

-

VM
1
0
0
K

Ω

9

2. Manufacturing

2.1. Engineering Drawings

Since most Nixie tube clock-builders don’t

have access to a machine shop, I’ve simplified

the design process to accommodate these

limitations. Besides using standoffs for the

printed circuit boards, no fasteners are

required; the whole manufacturing process

can be accomplished with wood glue, a drill,

and an XActo™ mini-saw (or equivalent).

Appendix B1 displays the Bill of Materials

with further description of the components

used in the design. Figure 2.1 shows the

exploded view of the Nixie tube clock, where

the ③top PCB and ②bottom PCB are

separated by standoffs. The bottom PCB has

the ④ESP32 module attached as a hat, or

soldered; whichever is the easier

configuration. The ⑥NCH6100HV is

mounted to the bottom of the ①enclosure

box by either adhesive or two M1 screws.

Four different standoffs are used in this

design. The balloons in Figure 2.2 and Figure

2.3 illustrate this:

⑦ M2.5x20mm + 6mm Thread

⑧ M2.5x6mm

⑨ M2.5x15mm + 6mm Thread

⑩ M2.5x6mm + 6mm Thread

The top of the assembly contains the ③top

PCB: soldered to this are the three ⑬yellow

LEDs and the ⑪IN-14 Nixie tubes. The

⑫mounting cover fits directly over all of these

components and is bounded by the topmost

standoff.

Figure 2.4 displays the front view detail

drawing from Appendix B2. The broken-out

Figure 2.1 | Exploded view of Nixie tube clock assembly.

Figure 2.2 | Side view of full Nixie clock.

10

section displays the diameter hole that accepts

the ⑤12V adapter, which is press fit from the

inside then fixed in place with adhesive.

The box can be constructed using four

wooden walls, a bottom, and the top cover, but

the design I’ve illustrated adds a slight ⦟30°
chamfered edge. This optional aesthetic is

achieved using a small square rod of

approximately 8.0mm square cut into four

sections to form a perimeter around the box.

After wood glue adheres this feature to the

box, the chamfer can be added through

sanding.

Appendices B3-B6 have 1:1 drawings that can

be printed out for the cutting and drilling

process. B3-B5 contain the walls of the box,

while B6 contains the top mounting plate.

Positional, maximum material condition

GD&T callouts require the position of the

holes to accommodate the ⑬yellow LEDs,

the ⑪IN-14 Nixie tubes, and the

⑫mounting cover. The mounting cover also

provides a safety feature, preventing

electrocution from high-voltage, exposed

wires running from the HV power supply to

the Nixie anodes. In order to accommodate

the profile of the circuit board, the bottom

Figure 2.5 | Top cover from Appendix B6.

plane of the mounting cover can be sanded to-

shape.

Figure 2.5 previews the sheet attached in

Appendix B6, along with all the positional

tolerances required for assembly. The

following positional tolerances are observed.

Figure 2.6 | GD&T positional tolerances.

Although the tools recommended for

manufacturing the box afford little accuracy,

the alignment of these components is

Figure 2.3 | Front view of full

Nixie clock.

Figure 2.4 | Front view detail drawing of ①enclosure box.

11

detrimental to ensuring proper fit of the top

board. This GD&T callout ensures the hole is

sized large enough to allow the Nixie tubes

and LEDs are able to fit through, while not

drastically exceeding ideal dimensions. The

spacing between the LED holes and the Nixie

tube holes is tight, so proper positioning

tolerances ensure no manufacturing errors

produce merged holes.

2.2. Manufacturing

Use the 1:1 drawings in Appendices B3-B6 as

a reference to cut the craft wood. Print two

copies of the BOARD, LT+RT, as the left and

right sides of the Nixie clock are the exact

same. Note that the drawings provide the

board width as 5.0mm; if a different board

width is desired, adjust the measurements

accordingly. Also print two copies of the TOP

BOARD, as the bottom board holds the same

perimeter dimensions. Drill holes according

to the positional tolerances in Appendix

drawing B2.

The drawing in Appendix B2 displays a top

view of the box. Regardless of the width of the

wood selected for the outer frame, the internal

dimensions of the inner opening will remain

consistent. B2 also displays the chamfered

upper edge, which is an optional feature (as

previously discussed.)

Nails are an acceptable option to fix all sides

of the box. In an effort to make this project

require minimum tools and simplify the

assembly process, this is also achievable with

wood glue. After ensuring the sides of the box

hold proper perpendicularity, lather wood

glue between surfaces on the corner joints.

Once all surfaces have properly been coated

and oriented, stand the frame upright, and

allow proper time for drying. Wood glue often

dries stronger than the wood itself. During the

drying process, I created internal fillets by

applying glue along the 90° edges to ensure

exceptional strength.

With the outer bounding walls of the box

constructed, adhere the bottom board to the

box. After the assembly has dried, screw

standoffs into the M2.5 holes on the bottom

board.

LT+RT

Board 1

LT+RT

Board 2

Front Board

Back Board

Figure 2.7 | Proper orientation of the boards forming the enclosure box.

12

The outer chamfer design adds aesthetic to

the box, but is completely optional. To

achieve this, I used four pieces of an 8.0mm

square rod, glued them to the upper part of

the box, and sanded them down to shape.

Sand the faces of the box to correct any

imperfections from the corner joints, ensuring

flat planes on all four sides. Once the entire

assembly has been completed, I recommend

painting the box before sanding the edges. I

used two different paint colors: dark brown to

maintain a classic aesthetic, and gold to

embellish the letters on the front of the box.

Once the box has been painted, sanding the

edges adds a touch of a “worn” aesthetic. This

feature can easily be corrected by re-painting.

After soldering all the boards, fix the

NCH6100HV high voltage power supply

using two M2.5 screws. The position is shown

in figure 2.2 by Balloon 6.

Attach the bottom (small and square) PCB in

proper orientation to two standoffs. Insert the

DC adapter into the back hole of the Nixie

clock. Connect two male-female DuPont

wires to both terminals of its screw terminal,

and connect the remaining female side of each

wire to the input/low voltage side on the

NCH6100HV power supply.

Wire the HV side of the NCH6100HV power

supply with two female-female DuPont wires
2

.

These will later be connected to the JP2 pin

header on the top board, to ports 1 and 2

(shown in Appendix C1.)

Connect female-female DuPont connectors to

all seven pinouts on the bottom board (shown

in Appendix C3.) With the top board not yet

connected to all four standoffs, connect the

2

 If control of the high voltage connection is desired,

connect a third female-female DuPont wire to the

SHDN terminal shown in Figure 1.6. Connect this to

one of the unused GPIO pins discussed in section 3.6.

wires from the bottom board and the

NCH6100HV high-voltage output to the

underside pin headers:

• GND to GND.

• HV to +180-220V.

Connect the bottom board DuPont wires to

the top board as follows:

• One +5V bottom pinout to the top

+5V line.

• PULSE to PULSE.

• SHCP to CLOCK.

• STCP to LATCH.

• DS to DATA.

• DIVLED to DIVLED.

Space the bottom board from the top board

using standoffs. For the other two holes that

were unused by the bottom board, screw these

two standoffs to the same height as the other

two.

By this point, all four pillars of standoffs

should reach approximately the height of the

enclosure’s top surface. Attach the top cover

to the top of the upper PCB, then fasten

screws/small standoffs to join all four M2.5

holes, sandwiching the top cover and upper

PCB board together
3

.

Once all connections have been completed,

connect the 12VDC adapter to the wall supply

cord. The device should properly boot and

display the time.

3

 If needed, the top cover and top PCB can be separated

with standoffs instead.

13

3. Circuit Schematics

3.1. Power Considerations

Since the device uses two distinct voltage lines,

it’s critical to use proper circuit design to

segregate them. Powering the Nixie tubes

requires nearly 200 volts. Without using a

device embedded with BJTs or Zener diodes

to separate these voltage lines, electrical failure

is almost certainly assured.

The other line operates on a standard 5V

supply. This powers the ESP32 module,

LEDs, and logic-operating components

(which are often stepped down to 3.3V

through the ESP32 feather board.)

In order to power both these supply lines

while using a single voltage source, we use a

7805TV voltage regulator. Since our device

obtains power from a 12V wall power source,

we can use this source to power both the 200V

supply line and the 5V supply line, while

maintaining a proper degree of separation.

Figure 3.1 | Voltage regulator circuit component. See

Appendix C3 for complete drawing.

In Figure 3.1, the circuit schematic for the

voltage regulator is displayed. The leftmost

side is supplied with 12VDC from a wall

source. On each side, two decoupling

capacitors filter out noise: the left side with

0.1μF and 10μF capacitances; and the right

side with 0.1μF and 22μF capacitances. This

4

 Ensure the USB Type A and 12VDC power supply

are NEVER connected at the same time. This can lead

to serious issues with the microcontroller.

ensures any additional noise during operation

of the nixie clock is filtered out and supplies

our microcontroller with the standard 5V

required.
4

The 12V supply line is also connected to the

NCH6100HV high-voltage boost converter,

which supplies 200V to the Nixie tube circuit.

3.2. PCB Separation

As shown in Appendix C2 and C3, the circuit

for the Nixie clock has been divided into two

PCB boards: an upper board to mount the

Nixie tubes, LEDs, and logic; and a bottom

board to house the ESP32 and 7805TV

voltage regulator.

Both PCBs have sets of pin headers.

Lower Board – 1x06 JP2

• CLOCK: Clock/SHCP pin.

• LATCH: Latch/STCP pin.

• DATA: Serial/DS pin.

• PULSE: Drives both time LEDs.

• DIVLED: Powers first LED.

• PIN21: Optional GPIO pin.

Lower Board – 1x03 JP1

• 5V: Two additional pins breaking

out the 5V supplied by the voltage

regulator.

• GND: Ground pin.

Lower Board – 2x08 JP3

• Used to break out the rest of the

components available to the

ESP32 module.

 Upper Board - 2x06 JP1

• Connects pins to the SN74HC595

surface mount chip.

14

Upper Board – 2x03 JP2

• +5V: Connected to lower board

5V supply pin.

• HV: Connected to HV side of the

NCH6100HV high-voltage power

booster.

• GND: Common ground,

connected to the lower board

GND.

Both boards’ M2.5 holes are concentric.

When looking down on the Nixie clock from

the top, with the front pointing away, the

bottom board is mounted to the right two

standoffs.

3.3. IC Connections

Figure 3.2 displays both the high voltage and

logical voltage supply lines, separated by the

SN74141 chip.

5

 See Figure 1.1 and Table 1.2.

The 74HC595 has 16 total pins. Q0 through

Q7 are the logical pins representing the 8-bit

register, while Q7s (or Q7’) represents the

daisy-chain output pin, connected to the next

DS/Serial pin.
5

The MR̅̅̅̅̅ pin and VCC are connected to +5V.

The Master Reset pin is set high to disable

reset of the registers. GND and Output

Enable (OE̅̅ ̅̅) are grounded to enable output.

DS, STCP, and SHCP are connected to the

ESP32 microcontroller, driving the logic of

the whole process. STCP and SHCP are

wired to every SN74HC595 shift register, as

the logic of the process requires every register

shifting at the same time; without all registers

connected, the Q7s would be unable to shift

binary values to the next register.

Q0 through Q7 are separated into four-byte

packages that are each wired to a K155ID1

chip. The logic of bytes A, B, C, and D

determines the active numerical gate on the

Figure 3.2 | Integrated circuit connections. Shows both the +200V high voltage side and the +5V logic side, separated by

the SN74141 chip. See Appendix C1 for the full upper board schematic.

15

right-hand side of the chip through use of BJT

and Zener diode logic, separating the high-

voltage line from the logical line (although all

voltage lines share a common ground.)

The Nixie tubes are wired to all 0-9 terminals

of the K155ID1 Binary-to-BCD chip. Left-

hand decimal point and right-hand decimal

point wires are left disconnected since they are

not in use. The “A” terminal accepts the high-

voltage line. Dividing the Nixie tube and the

HV line is a 120KΩ resistor, to ensure proper

current and correct voltage drop between the

Nixie tube and ground.

Please reference Appendix C1 for the full

upper board schematic to fully understand

how the Q7s daisy chain connection works, as

well as how the STCP and SHCP lines are

connected. Beyond daisy-chaining the Q7s

line to the next serial input, the other two 2-

Nixie groups are wired exactly the same as

shown in Figure 3.2.

3.4. LED Connections

Three LEDs are used in this design: two

separating the hours, minutes, and seconds,

and one separating the tens’ and ones’ place

of the hours.

Recall the Nixie tube clock was originally

designed to play homage to a device from

Steins;Gate, the Divergence Meter. The

device shows “world-lines,” following the

notation of a number between 0 and 10 with

six significant figures. This LED is an optional

addition that can be used to display custom

messages at the top of the hour.

Figure 3.3 | LED connections for time separator line

and first LED line. See Appendix C1 for the full

schematic.

Figure 3.4 | ESP32 schematic for the bottom board.

See Appendix C3 for the full schematic.

16

3.5. ESP32 Connections

Figure 3.4 shows the breakout for the ESP32

featherboard. The USB pin acts as the +5V

supply for the microcontroller, and GND

grounds the device to the project’s common

ground.

The rest of the GPIO pins are broken out for

either connection to the upper board, or

optional logic that can later be added. Pins 14

through 33 are used in this project. Pins used

in this project are listed in the following table.

GPIO Pin Description

21 Optional buzzer control*

14 Clock/SHCP

32 Latch/STCP

15 Data/Serial/DS

27 First LED control

12 Time separator LEDs

Table 3.1 | Pins used for the Nixie tube clock.

*Connection used for an optional feature.

3.6. PCB Design Considerations

Appendices C2 and C3 display the EAGLE™

PCB renderings.

The top PCB has been designed for Nixie

tubes and LEDs to be directly soldered.
6

 The

74HC595 shift register, 50Ω, and 150KΩ

resistors are the only surface-mount

components; although the K155ID1 chip

would ideally follow suit, no surface-mount

packages are available (due to the antiquity of

this component.) A better visualization of

these spacings, without the air wires and

mounted components, can be found in

6

 Since Nixie tubes only have an estimated 5000 hours

of life, using Mill-Max breakout socket pins can

facilitate the replacement process.

Appendix B6, as the top/cover board directly

mates with the top circuit board’s features.

The bottom PCB is mounted directly below

the Top PCB. The two M2.5 holes are

concentric with the two left holes of the top

PCB, separated by standoffs. The ESP32

featherboard is soldered to the right side of the

PCB
7

 with the USB Type A female port facing

downwards. Programming the ESP32 either

requires removal of the PCB or drilling a hole

into the side of the box so that a USB Type A

cable can connect to it
2

.

7

 Instead of soldering the ESP32 directly to the board, a

female pin header can be soldered here instead, as the

hole distance follows the standard 2.56mm separation.

17

4. Program Code

Now that all the engineering schematics and electrical circuit designs

are established, the program code can be fully understood. The

language delegated for this project is the industry standard, C++; as a

mid-level language (compared to high-level languages like Python or

low-level languages like Assembly), we can easily interface with the

ESP32 microcontroller. Personally, I prefer to use a program called

Sloeber that extends the strength of the Arduino environment into

higher-level programming for more demanding projects.

The state diagram shown below in Figure 4.1 demonstrates the logic

for the finite state machine design. State 1 serves as a hub state at

which time is continuously displayed. Changing the time state is

contingent upon user interaction with left and right buttons (denoted

as the  and  symbol, respectively). Pressing both buttons together

designates an “accept” command, while left or right either increment

or decrement the selected value. Upon an accepted double-press, the

program accepts selection of whether hours, minutes, or seconds are

to be changed, starting in the hours’ selection by default. Once the

double accept command is entered, this quantity can be decremented

or incremented by the left and right buttons, respectively. When the

quantity has been adjusted to the correct value, entering the accept

command again progresses the program back to the hub/time state.

This feature, or course, is optional, but highly recommended: Section

4.2 details configuration of the start time at boot. Incorporating button

control is advised to enhance user interface with the Nixie clock, as it

significantly simplifies the process.

State 5 is also an optional state. For my own design, the numerical

display flicks through random numbers before settling on the top-of-

the-hour time. This state exemplifies how additional states (e.g. a

motion sensor state to prevent overuse of the Nixie tubes when

nobody is around) can be added to further modify the clock. This is

also why our circuit schematic in Section 4 allows for additional

pinouts.

18

Figure 4.1 | State diagram for the program’s finite state machine.

S0
Init

S1 [HUB]
Time

S3a

Minutes

Select

S2a

Hours

Select

S4a

Seconds

Select

S3b
Change Min

( or )

S2b
Change Hour

( or )

S4b
Change Sec

( or )

 && 

 && 

 && 

 && 













S5

Top-of-hour
Message Mode

Always

19

4.1. Table of Variables

The following table lists all variables in the main program. Variables

with an asterisk are related to an optional feature that can be added

on. See Section 5 for additional feature options.

Variable Type Description

Pinout Variables

latchPin Static Int STCP on the 74HC595.

clockPin Static Int SHCP on the 74HC595.

dataPin Static Int DS/Serial on the 74HC595.

pulsePin Static Int
Drives two top-mounted LEDs that act

as separators for the hour.

buzzerPin* Static Int Drives the buzzer for sound.

incPin Static Int Button incrementing time.

decPin Static Int Button decrementing time.

statusPin Static Int Displays status of time selection.

divPin* Static Int
Drives first LED separating hour tens

and ones place.

timebuf Static Int -

Time Variables

dataH Byte Stores hour value in binary form.

dataM Byte Stores minute value in binary form.

dataS Byte Stores second value in binary form.

currenttime Int
Time extracted from the millis()

function.

mil[2] Double array
Records and stores previous and last

time state for comparison.

d_mil Double
Calculates time change from

(mil[1] - mil[0]).

T_msec Double
Time in milliseconds. Used for pulsing

of LEDs and timing music notes.

pulseglow Int
Holds the active value for the PWM

cycle of the blinking time LEDs.

T_sec_act Double Active time in seconds.

T_secs Double Time in seconds. {0 ≤ T_secs ≤ 59}

T_s_ones Int Seconds ones’ place.

T_s_tens Int Seconds tens’ place.

T_mins Double Time in minutes. {0 ≤ T_mins ≤ 59}

T_m_ones Int Minutes ones’ place.

T_m_tens Int Minutes tens’ place.

T_hrs Double Time in hours. {0 ≤ T_hrs ≤ 59}

T_h_ones Int Hours ones’ place.

20

T_h_tens Int Hours tens’ place.

T_days Double Counter for number of days passed.

Gmult* Double
Timer that slows or accelerates BPM of

song.

Song Variables*
GOS_duration[13]* Double array Contains the duration of each note.

GOS_highnote[13]* Double array Contains the frequency of each note.

EstablishSongStart* Bool Returns if song has started.

SongEnd* Bool Returns if song has ended or not.

SongStart* Double Start time calculated from when first run.

SongTime* Double Song time relative to the start time.

NoteTime* Double
Current value pulled from

GOS_duration[i].

ActiveNote* Int
Current note pulled from

GOS_highnote[i].

Custom Message Variables “DivMode” *
DivMode_SO[20] Int array Holds seconds ones’ value for message.

DivMode_ST[20] Int array Holds seconds tens’ value for message.

DivMode_MO[20] Int array Holds minutes ones’ value for message.

DivMode_MT[20] Int array Holds minutes tens’ value for message.

DivMode_HO[20] Int array Holds hours ones’ value for message.

DivMode_HT[20] Int array Holds hours tens’ value for message.

DivNumber Int
Current displayed number. Fed into

DivMode arrays to pull respective values.

Finite State Machine / Program Variables
OpMode Int Operation mode.

BothPressed Int Returns duration both buttons pressed.

DecPressed Int Returns duration left button pressed.

IncPressed Int Returns duration right button pressed.

TimeMode Int Specifies time mode.

ChangeTime Bool Is the time to be changed?

DoublePress Bool Is there a double press?

DecPress Bool Is there a left button press?

IncPress Bool Is there a right button press?

PressButtonBuf Double Buffer preventing rapid button presses.

T_0 Int -

SecondPassed Bool -

T_ms0 Double -

 MSPassed Bool -

Currentms Double -

Table 4.1 | Program variables.

21

4.2. Setup/Initialization

In the initialization loop, program variables are set to proper initial

values. The following declaration establishes the second value that the

clock starts at from boot:

Snippet 4.1 | Calculation of initialization starting time.

4.3. Time Control

This program operates based upon the innate Arduino function

millis(), which returns the time that has passed since the board was

powered on. We obtain the time difference (since the last time we

checked) by comparing our new value with a previous value, then

store it into the double d_mil to later add to a variable storing the

active time in seconds, dividing this value by 1000 to obtain the exact

current time in seconds.

Snippet 4.2 | Current time calculation from millis().

222 // Hour Minute Second

223 double T_sec_act = (11*3600) + (20*60) + (02);

251 int currenttime = millis();

252 mil[1] = mil[0];

253 mil[0] = currenttime;

254 double d_mil = mil[0] - mil[1];

255 double T_sec_act += d_mil/1000;

22

This time value, stored in the double T_sec_act, is used to calculate

all the rest of the values. For sensitive time values that require the use

of significant figures beyond whole numbers, the double type is used;

otherwise, integer types store tens- and ones-place values for binary

conversion.

Snippet 4.3 | Deriving tens’ and ones’ values from current time.

Each ten-and-one time set for seconds, minutes, and hours first

requires dividing out our T_sec_act value. From T_sec_act, we drive

a double representation of the hours, minutes, and seconds. This is

then converted to an integer type, and the Modulo (%) operator is

used to extract both the tens and ones place. In order to keep our

time values within the proper bounds (so that minutes or seconds, for

example, don’t surpass 60), we use a while() loop to constrain these

values.

257 PressButtonBuf += (d_mil/1000);

258 T_days = (int)(T_sec_act/3600)/24;

259

260 double T_hrs = T_sec_act/3600;

261 while (T_hrs > 24)

262 T_hrs -= 24;

263 T_h_ones = (int)((int)T_hrs % 10);

264 T_h_tens = (int)(((int)T_hrs/10) % 10);

265

266 T_mins = T_sec_act/60;

267 while (T_mins > 60)

268 T_mins -= 60;

269 T_m_ones = (int)((int)T_mins % 10) ;

270 T_m_tens = (int)(((int)T_mins/10) % 10);

271

272 T_secs = T_sec_act;

273 while (T_secs > 60)

274 T_secs -= 60;

275 T_s_ones = (int)((int)T_secs % 10);

276 T_s_tens = (int)(((int)T_secs/10) % 10);

23

4.4. Defining a Proper Button Press

To prevent noise from affecting the accuracy of the buttons, we must

clearly define what constitutes a button press for our program. Since

our finite state machine passes through the loop() code many times

a second, we check both of our buttons for any state changes:

Snippet 4.4 | Button press check.

Since we now have variables representing the state of each button, we

assess how long they’ve been pressed. How many consecutive passes

have they been pressed? After testing by printing button presses over

serial, I found that a value around 10 is most effective for defining a

button press. We use the integer type variables BothPressed,

DecPressed, and IncPressed to count consecutive presses. If this

cycle is broken, or the button is not held down for ten cycles, these

variables reset themselves to zero.

310 bool dec = digitalRead(decPin);

311 bool inc = digitalRead(incPin);

313 // Defining double press

314 if ((dec == 1) && (inc == 1))

315 BothPressed += 1;

316 else

317 BothPressed = 0;

318 if (BothPressed >= 10)

319 {

320 DoublePress = 1;

321 DecPress = 0;

322 IncPress = 0;

323 BothPressed = 0;

324 }

325 // Defining decrement press

326 if ((dec == 1) && (inc == 0))

327 DecPressed += 1;

328 else

329 DecPressed = 0;

330 if (DecPressed >= 10)

331 {

332 DoublePress = 0;

333 DecPress = 1;

334 IncPress = 0;

335 DecPressed = 0;

336 }

24

Snippet 4.5 | Defining button presses.

The DoublePress, DecPress, and IncPress values are Boolean state

variables that raise flags when a button state has been pressed, or

“raises the hand” of these variables so that this information can be

processed later.

4.5. HX711 and K155ID1 Interface: Program Side

We have already discussed the ramifications of the HX711 and

K155ID1 from a hardware perspective. We’ve also discussed the

circuit design to interface with these components. Now, we enter the

final step: writing code to push our four-byte binary integers to the

Nixie tubes.

In Section 1, we defined three important pins on the HX711: the

Latch Pin, the Data Pin, and the Clock Pin, the three pinouts that

allow us to operate the shift register. The Data Pin, or Serial pin,

accepts binary values; the STCP/Latch Pin defines whether the

HX711 is listening for values; and the SHCP/Clock Pin shifts the

value in the Serial/first register to the next available position on every

rising edge transition. Our program initializes these three pins in the

setup() function.

337 // Defining increment press

338 if ((dec == 0) && (inc == 1))

339 IncPressed += 1;

340 else

341 IncPressed = 0;

342 if (IncPressed >= 10)

343 {

344 DoublePress = 0;

345 DecPress = 0;

346 IncPress = 1;

347 IncPressed = 0;

348 }

25

Snippet 4.6 | Pushing binary values to the HX711.

The OpMode state variable determines whether the program is

operating in State 1 or State 5: the hub/time state, or the message

display state. When OpMode == 1, the program is in State 1.

The three variables dataS, dataM, and dataH each store a full byte of

information, carrying the four-bit ones’ and tens’ values together.
8

After each ones-and-tens binary pair is concatenated, these values are

sent through the shiftOut() command to be physically transferred

to the registers in the HX711. Note that the Latch Pin must be set low

before shifting values. When the Latch Pin undergoes a rising edge

transition to high, the HX711 stops listening and the registers’ 8-bit

representation is shifted to physical representation on pins Qa-Qh.

The ShiftOut library [9] uses the Serial/Data Pin and the Clock Pin

to shift values into the registers when the Latch Pin is listening. To

generalize, the procedure goes as follows: the Clock Pin is set low to

prepare for rising edge transition; the Serial Pin holds the next value

to be passed through; the Clock Pin is set high so that the rising edge

transition shifts the Data Pin values to the next register.

8

 The circuit schematic in Section 3 was accidentally wired in the wrong order, but

this is not an issue. Due to the wiring configuration of the three HX711 chips, where

the ESP32 Serial is connected to seconds first, the order of shifting is actually

seconds, then minutes, then hours. In my final program code, lines 530 and 532

have the left-hand side of the equal sign switched in order to fix this.

526 if (OpMode == 1)

527 {

528 DivNumber = 0;

529

530 dataH = GetBinary_ByteForm(T_h_ones, T_h_tens);

531 dataM = GetBinary_ByteForm(T_m_ones, T_m_tens);

532 dataS = GetBinary_ByteForm(T_s_ones, T_s_tens);

533

534 for (int j = 0; j < 1; j++)

535 {

536 digitalWrite(latchPin, 0); // Start listening

537 shiftOut(dataPin, clockPin, dataH);

538 shiftOut(dataPin, clockPin, dataM);

539 shiftOut(dataPin, clockPin, dataS);

540 digitalWrite(latchPin, 1); // Stop listening

541 }

542 }

26

4.6. Time-Responsive LEDs

I included yellow LEDs as separators for the hours, minutes, and

seconds on the clock. Instead of having them always on, the LEDs

undergo a “bounce” effect, transitioning from off, to on, then off again

with a period of two seconds. This behavior is better explained by the

following equation and graph.

𝑃𝑊𝑀 = |255 ∙ (sin(𝜋 ∙
𝑡𝑖𝑚𝑒

200
))|

Figure 4.2 | Plot of PWM equation.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

P
W

M
 V

A
LU

E

TIME [ms]

TIME VS. PWM VALUE

pulseglow = fabs(255 * (sin((3.1415)*(((double)T_msec)/200))));

27

5. Additional Features

5.1. Music

I added music to my nixie tube clock as an alarm, with the option of

also having it play at the top of the hour. Only one GPIO pin is

required per buzzer. Each additional chord note requires another

buzzer. For the example provided below in Figure 5.1, two buzzers

would be required to play the melody. This song can also be played

with a single buzzer, taking the high note of each chord.

Figure 5.1 | Sample song for creating music with a buzzer.

I will cover the process of converting sheet music into a song for the

buzzer. I assume the reader has minimum experience with music

theory, so I will briefly explain the math behind calculating the rhythm

of the song and turning these notes into code.

The notation ♪=76 expresses the beats-per-minute rhythm of the

song. The stacked fours represent that there are four beats per

measure, or per section ending with a vertical bar. So with this

particular example, we derive the following equation to calculate beats

per millisecond:

(
76 𝑏𝑒𝑎𝑡𝑠

𝑚𝑖𝑛
∙

1 𝑚𝑖𝑛

60 𝑠𝑒𝑐
∙

1 𝑠𝑒𝑐

1000 𝑚𝑠
)

−1

= 𝟕𝟖𝟗
𝒎𝒔

𝒃𝒆𝒂𝒕

Now that the timing has been established, we must also know how to

convert music notes into frequencies. Middle C has a frequency of

28

261.63. A lookup table of note vs. frequency (provided in Appendix

D) presents us with the values of each note. To use my selected song

as an example, this is the table I generated from the musical values.

Note names follow the notation of note and octave: C5, for example,

is octave 5 note C, one octave above middle C.

Note Name
Frequency

[hz]

Time from

start
[ms]

1
C5 523.25

0
F4 349.23

2
B♭

4 466.16
591.75

F4 349.23

3
E♭5 659.25

1183.50
B♭

4 466.16

4
C5 523.25

1578.00
A♭

4 415.30

5
B♭

4 466.16
2169.75

G4 392.00

6
G4 392.00

2761.50
-- --

7
A♭

4 415.30
2958.75

-- --

8
B♭

4 466.16
3156.00

E♭4 311.13

9
A♭

4 415.30
3747.75

E♭4 311.13

10
E♭5 659.25

4339.50
-- --

11
G4 392.00

4734.00
E♭4 311.13

12
B♭

4 466.16
5720.25

E♭4 311.13

Table 5.1 | Note frequency and timings for example song.

29

Since I used a single buzzer, my code uses only the topmost notes of

each chord. My sample code can be found below. In the first code

snippet, notes and timings are both defined in 12-value arrays.

Snippet 5.1 | Defining notes and timings.

The code below implements the arrays we defined above. It plays the

notes with respect to the process of our finite state machine, when the

operation mode is set to play music.

double GOS_duration[13] =

{

100*Gmult,

591*Gmult,

1183*Gmult,

1578*Gmult,

2169*Gmult,

2761*Gmult,

2958*Gmult,

3156*Gmult,

3747*Gmult,

4339*Gmult,

4734*Gmult,

5420*Gmult,

6000*Gmult

};

double GOS_highnote[13] =

{

NOTE_C5,

NOTE_AS4,

NOTE_DS5,

NOTE_C5,

NOTE_AS4,

NOTE_G4,

NOTE_GS4,

NOTE_AS4,

NOTE_GS4,

NOTE_DS5,

NOTE_G4,

NOTE_GS4,

0

};

if (OpMode == 2)

 {

 if (EstablishSongStart == false)

 {

 Serial.println("Song Started.");

 SongStart = currenttime;

 EstablishSongStart = true;

 NextNote = 0;

 SongTime = 0;

 ActiveNote = 0;

 digitalWrite(divPin, 1);

 }

 SongTime = currenttime - SongStart - 1000;

 if (SongTime > SongStart+GOS_duration[ActiveNote])

 {

 ledcWriteTone(2,GOS_highnote[ActiveNote]);

 ledcWrite(2,255);

 ActiveNote += 1;

 }

30

Snippet 5.2 | Example code for programming a song.

If the song has not yet been started, all the values are set to their

respective initial quantities. Each pass through the main program

code, the SongTime is calculated according to the time that has

passed since the song began. Should the current time be greater than

the value in the array defining note timings, the respective note is

played, and the array is incremented to the next note. If the active

note is greater than 14, the song is over, And if the song has ended,

all the state variables are reset, and the sound is turned off.

 if (ActiveNote > 14)

 {

 SongEnd = true;

 Serial.println("Song ended.");

 }

 if (SongEnd == true)

 {

 EstablishSongStart = false;

 SongEnd = false;

 OpMode = 1;

 ActiveNote = 0;

 NextNote = 0;

 ledcWrite(2,0);

 digitalWrite(divPin, 0);

 }

 }

31

APPENDICES.

Appendix A: Interfacing with Sloeber

[WIP]

32

Appendix B: Engineering Drawings

33

34

35

36

37

38

39

40

41

42

Appendix C: Electrical Schematics

43

44

45

46

Appendix D: Full Program Code

#include "Arduino.h"

#include <stdio.h>

#include <math.h>

//==

 //

// NAME : Divergence Shifter Clock

 //

// : FUTURE GADGET LABS, Western Office

 //

// :

 //

// AUTHOR : Ryan Kissinger, Jason Keller

 //

// : r.kissinger68@gmail.com

 //

// : https://autononymous.github.io/index.html/

 //

// :

 //

// DATE : 16 January 2020

 //

// :

 //

// VERSION : 2.31 (First)

 //

// :

 //

// DEVICE : ESP32-WROOM32 MODULE (Adafruit)

 //

// :

 //

//==

 //

// NOTES : [MODE 1A: CLOCK]

 //

// : Clock section runs on the millis() function, which

 //

// : keeps an active tabulation of the time since the

 //

// : program has started running. Seconds are converted

 //

// : into minutes, then hours, and each digit is extracted

 //

// : and converted into binary, for use in the 74HC595

 //

// : Shift Register module.

 //

// :

 //

// : [MODE 1B: DIVERGENCE HOUR CHIME]

 //

// : Are you on the right worldline? At the top of each

 //

// : hour, Gate of Steiner plays and the divergence meter

 //

ElPsyKongroo.ino

Click this link for the attached .ino file:

https://autononymous.github.io/index.html/

47

// : shows the current worldline.

 //

// :

 //

// : [MODE 2: CONSTANT DIVERGENCE]

 //

// : When a connected switch is TRUE, the divergence meter

 //

// : is constantly shown. (To be added)

 //

// :

 //

// : [LICENSE]

 //

// : This file is Copyright 2020 by Ryan M. Kissinger and

 //

// : released under the Lesser GNU Public License, version

 //

// : 2. It intended for educational use only, but its use

 //

// : is not limited thereto.

 //

// : --

 //

// : THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 //

// : CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRAN-

 //

// : TIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

 //

// : RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 //

// : PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

 //

// : OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIR-

 //

// : ECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 //

// : DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

 //

// : SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

 //

// : PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

 //

// : ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 //

// : LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

 //

// : ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

 //

// : EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 //

// :

 //

//==

 //

// PINOUTS : 32 - Latch Pin, or STCP on the 74HC595.

 //

// : 14 - Clock Pin, or SHCP on the 74HC595.

 //

// : 15 - Data Pin, or DS on the 74HC595.

 //

48

// : 12 - Pulse Pin, driving the two top-mounted LEDs

 //

// : that act as separators for the hour, minute,

 //

// : and second places.

 //

// : XX - Divergence Pin, driving the LED separating the

 //

// : ones place of the active worldine.

 //

// : 27 - Buzzer Pin, driving the speaker.

 //

// :

 //

//==

 //

// CREDITS : [shiftOut MODULE 1.0]

 //

// : Carilyn Maw & Tom Igoe

 //

// : 25 October 2006

 //

//==

 //

// RELEVANT DOCUMENTATION is listed at the bottom of this code.

 //

//==

 //

//==

===|

//============================[VARIABLE DEFINITIONS

]===================================|

//==

===|

//-----[Defining music note frequencies]-----//

#define NOTE_C4 262 // "middle C"

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

49

#define NOTE_B5 988

//-----[Defining music note frequencies]-----//

static int latchPin = 32;

static int clockPin = 14;

static int dataPin = 15;

static int pulsePin = 12;

static int buzzerPin = 21;

static int incPin = 26; // or Pin A0

static int decPin = 25; // or Pin A1

static int statusPin = 99; // Status of time change mode (27)

static int divPin = 27;

static int timebuf = 1;

//-----[Time variables]----------------------//

// Below are the binary values for time.

//

// TENS ONES

byte dataH; // Hour XXXX XXXX

byte dataM; // Minute XXXX XXXX

byte dataS; // Second XXXX XXXX

int currenttime; // Time extracted from the millis()

function.

double mil[2]; // Records previous and last time state.

double d_mil; // Calculates time change from (mil[1] -

mil[0]).

double T_msec; // Time in milliseconds. Used for pulsing

of LEDs and music score timing.

int pulseglow; // Holds the active value for PWM cycle of

the blinking time separator LEDs.

double T_sec_act; // Active time in seconds.

double T_secs; // Time in seconds: {0 <= T_secs <= 59}.

int T_s_ones; // Seconds ones' place.

int T_s_tens; // Seconds tens' place.

double T_mins; // Time in minutes: {0 <= T_mins <= 59}.

int T_m_ones; // Minutes ones' place.

int T_m_tens; // Minutes tens' place.

double T_hrs; // Time in hours: {0 <= T_hrs <= 23}.

int T_h_ones; // Hours ones' place.

int T_h_tens; // Hours tens' place.

double T_days; // Counter for number of days passed/

double Gmult = 1; // Timer that slows or accelerates BPM of

song.

//-----[GATE OF STEINER Notes]-----------------//

// 4/4 time , 76 BPM or 789ms/beat

double GOS_duration[13] =

{100*Gmult,591*Gmult,1183*Gmult,1578*Gmult,2169*Gmult,2761*Gmult,2958*Gmult,3156*Gmult

,3747*Gmult,4339*Gmult,4734*Gmult,5420*Gmult,6000*Gmult};

// C5 Bb4 Eb5 C5 Bb4 G4 Ab4

Bb4 Ab4 Eb5 G4 Ab4

50

double GOS_highnote[13] =

{NOTE_C5,NOTE_AS4,NOTE_DS5,NOTE_C5,NOTE_AS4,NOTE_G4,NOTE_GS4,NOTE_AS4,NOTE_GS4,NOTE_DS

5,NOTE_G4,NOTE_GS4,0};

//-----[Song variables]------------------------//

bool EstablishSongStart; // Boolean returning if song has started.

bool SongEnd; // Returns of song has ended or not

double SongStart; // Start time calculated from when first run

double SongTime; // Song time relative to the start of the song

double NextNote; // Unused

double NoteTime; // Value pulled from GOS_duration[]

int ActiveNote; // Which note is currently active

//-----[Divergence Mode]-----------------------//

// 0-9 regular numbers, 10-16 nothing

int DivMode_SO[20] = { 16 , 16 , 16 , 16 , 8 , 1 , 6 , 2 , 5 , 2 , 2 , 1 , 0

, 4 , 1 , 7 , 0 , 2 , 3 , 1 };

int DivMode_ST[20] = { 16 , 16 , 16 , 16 , 9 , 7 , 6 , 4 , 1 , 9 , 1 , 0 , 6

, 2 , 2 , 1 , 16 , 8 , 1 , 0 };

int DivMode_MO[20] = { 16 , 16 , 2 , 5 , 3 , 0 , 6 , 8 , 6 , 4 , 6 , 1 , 5

, 0 , 5 , 4 , 8 , 5 , 7 , 4 };

int DivMode_MT[20] = { 16 , 16 , 16 , 2 , 2 , 2 , 6 , 3 , 0 , 3 , 7 , 0 , 5

, 6 , 4 , 2 , 16 , 4 , 3 , 8 };

int DivMode_HO[20] = { 16 , 16 , 4 , 7 , 16 , 5 , 6 , 0 , 8 , 3 , 6 , 1 , 3

, 9 , 9 , 6 , 16 , 3 , 6 , 5 };

int DivMode_HT[20] = { 16 , 1 , 8 , 3 , 4 , 1 , 6 , 1 , 3 , 0 , 7 , 0 , 6

, 6 , 0 , 3 , 9 , 1 , 8 , 9 };

int DivNumber = 0;

//-----[Program variables]---------------------//

int OpMode; // Determines whether showing time or

playing song

int BothPressed;

int DecPressed;

int IncPressed;

int TimeMode;

bool ChangeTime;

bool DoublePress;

bool DecPress;

bool IncPress;

double PressButtonBuf;

int T_0 = 0;

bool SecondPassed = false;

double T_ms0 = 0;

bool MSPassed = false;

double currentms = 0;

//==

===|

//=================================[MAIN PROGRAM

]======================================|

//==

===|

void setup()

{

 pinMode(latchPin, OUTPUT);

 pinMode(clockPin, OUTPUT);

 pinMode(dataPin, OUTPUT);

 pinMode(divPin, OUTPUT);

 pinMode(33,OUTPUT);

 ledcSetup(1,500,8);

51

 ledcSetup(2,200,8);

 ledcAttachPin(pulsePin, 1);

 ledcAttachPin(buzzerPin,2);

 pinMode(incPin, INPUT);

 pinMode(decPin, INPUT);

 pinMode(statusPin, OUTPUT);

 Serial.begin(9600);

// Hour Minute Second

 T_sec_act = (11*3600) + (20*60) + (02); // This is the starting time for

the clock at boot.

 mil[0] = 0;

 T_days = 0;

 pulseglow = 0;

 OpMode = 1;

 EstablishSongStart = false;

 SongEnd = false;

 BothPressed = 0;

 DecPressed = 0;

 IncPressed = 0;

 TimeMode = 0;

 // 0 No time adjust

 // 1 Selecting quantity to change

 // ... Back to 0

 ChangeTime = 0;

 DoublePress = 0;

 DecPress = 0;

 IncPress = 0;

 PressButtonBuf = 0;

}

void loop ()

{

//Calculating the current time:

 currenttime = millis();

 mil[1] = mil[0];

 mil[0] = currenttime;

 double d_mil = mil[0] - mil[1];

 T_sec_act += d_mil/1000;

 PressButtonBuf += (d_mil/1000);

 T_days = (int)(T_sec_act/3600)/24;

 T_hrs = T_sec_act/3600;

 while (T_hrs > 24) // Keeps hours

under 24

 T_hrs -= 24;

 T_h_ones = (int)((int)T_hrs % 10);

 T_h_tens = (int)(((int)T_hrs/10) % 10);

 T_mins = T_sec_act/60;

 while (T_mins > 60) // Keeps minutes

under 60

 T_mins -= 60;

 T_m_ones = (int)((int)T_mins % 10) ;

 T_m_tens = (int)(((int)T_mins/10) % 10);

 T_secs = T_sec_act;

52

 while (T_secs > 60) // Keeps seconds

under 60

 T_secs -= 60;

 T_s_ones = (int)((int)T_secs % 10);

 T_s_tens = (int)(((int)T_secs/10) % 10);

 if (T_s_ones != T_0)

 {

 SecondPassed = true;

 }

 else

 SecondPassed = false;

 T_0 = T_s_ones;

 T_msec = T_sec_act*100;

 while (T_msec > 1000)

 T_msec -= 1000;

 currentms += d_mil;

 if (currentms >= 200)

 {

 MSPassed = true;

 currentms = 0;

 }

 else

 MSPassed = false;

//Switching to OpMode 2 if at the top of the hour

/*

 if ((T_s_ones == 0) && (T_s_tens == 0) && (T_m_ones == 0) && (T_m_tens == 0))

 {

 OpMode = 2;

 }

*/

//----------[Definition of Button Presses]-------------

 bool dec = digitalRead(decPin);

 bool inc = digitalRead(incPin);

// Defining double press

 if ((dec == 1) && (inc == 1))

 BothPressed += 1;

 else

 BothPressed = 0;

 if (BothPressed >= 10)

 {

 DoublePress = 1;

 DecPress = 0;

 IncPress = 0;

 BothPressed = 0;

 }

// Defining decrement press

 if ((dec == 1) && (inc == 0))

 DecPressed += 1;

 else

 DecPressed = 0;

 if (DecPressed >= 10)

 {

 DoublePress = 0;

 DecPress = 1;

 IncPress = 0;

53

 DecPressed = 0;

 }

// Defining increment press

 if ((dec == 0) && (inc == 1))

 IncPressed += 1;

 else

 IncPressed = 0;

 if (IncPressed >= 10)

 {

 DoublePress = 0;

 DecPress = 0;

 IncPress = 1;

 IncPressed = 0;

 }

//Serial.print("Dec | "); Serial.print(DecPress); Serial.print(" | Inc | ");

Serial.print(IncPress); Serial.print(" | Both | "); Serial.print(DoublePress);

Serial.print(" | ");

Serial.print(DecPressed);Serial.print(IncPressed);Serial.println(BothPressed);

//Serial.print("Dcp | "); Serial.print(DecPressed); Serial.print(" | Icp | ");

Serial.print(IncPressed); Serial.print(" | Botp | "); Serial.println(BothPressed);

// ----------[Time Change Mode]-----------

if (ChangeTime == 0)

{

 digitalWrite(statusPin, 1);

 if ((TimeMode == 0) && (DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 TimeMode = 1; // Start changing the time

 DoublePress = 0;

 }

 else if ((TimeMode == 1)) // If in change time mode,

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 TimeMode = 2;

 IncPress = 0;

 PressButtonBuf = 0;

 }

 if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 TimeMode = 3;

 DecPress = 0;

 PressButtonBuf = 0;

 }

 if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 1;

 PressButtonBuf = 0;

 DoublePress = 0;

 digitalWrite(statusPin, 0);

 }

 }

 else if ((TimeMode == 2)) // If in change time mode,

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 TimeMode = 3;

 IncPress = 0;

54

 PressButtonBuf = 0;

 }

 if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 TimeMode = 1;

 DecPress = 0;

 PressButtonBuf = 0;

 }

 if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 1;

 PressButtonBuf = 0;

 DoublePress = 0;

 digitalWrite(statusPin, 0);

 }

 }

 else if ((TimeMode == 3)) // If in change time mode,

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 TimeMode = 1;

 IncPress = 0;

 PressButtonBuf = 0;

 }

 if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 TimeMode = 2;

 DecPress = 0;

 PressButtonBuf = 0;

 }

 if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 1;

 PressButtonBuf = 0;

 DoublePress = 0;

 digitalWrite(statusPin, 0);

 }

 }

}

else if (ChangeTime == 1)

{

 if ((TimeMode == 1))

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 T_sec_act += 1;

 PressButtonBuf = 0;

 }

 else if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 T_sec_act -= 1;

 PressButtonBuf = 0;

 }

 else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 0;

 PressButtonBuf = 0;

55

 DoublePress = 0;

 }

 if ((T_s_ones == 1))

 {

 digitalWrite(statusPin, 1);

 }

 else

 {

 digitalWrite(statusPin, 0);

 }

 }

 else if ((TimeMode == 2))

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 T_sec_act += 60;

 PressButtonBuf = 0;

 }

 else if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 T_sec_act -= 60;

 PressButtonBuf = 0;

 }

 else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 0;

 PressButtonBuf = 0;

 DoublePress = 0;

 }

 if ((T_s_ones == 1) || (T_s_ones == 3))

 {

 digitalWrite(statusPin, 1);

 }

 else

 {

 digitalWrite(statusPin, 0);

 }

 }

 else if ((TimeMode == 3))

 {

 if ((IncPress == 1) && (PressButtonBuf >= timebuf))

 // and incremented, go to Minutes

 {

 T_sec_act += 3600;

 PressButtonBuf = 0;

 }

 else if ((DecPress == 1) && (PressButtonBuf >= timebuf))

 // and decremented, go to Hours

 {

 T_sec_act -= 3600;

 PressButtonBuf = 0;

 }

 else if ((DoublePress == 1) && (PressButtonBuf >= timebuf))

 {

 ChangeTime = 0;

 PressButtonBuf = 0;

 DoublePress = 0;

 }

 if ((T_s_ones == 1) || (T_s_ones == 3) || (T_s_ones == 5))

 {

 digitalWrite(statusPin, 1);

56

 }

 else

 {

 digitalWrite(statusPin, 0);

 }

 }

}

IncPress = 0;

DecPress = 0;

DoublePress = 0;

//If clock mode is currently active

 if (OpMode == 1)

 {

 DivNumber = 0;

 dataS = GetBinary_ByteForm(T_h_ones, T_h_tens);

 dataM = GetBinary_ByteForm(T_m_ones, T_m_tens);

 dataH = GetBinary_ByteForm(T_s_ones, T_s_tens);

 for (int j = 0; j < 1; j++)

 {

 digitalWrite(latchPin, 0); // Start listening

 shiftOut(dataPin, clockPin, dataH);

 shiftOut(dataPin, clockPin, dataM);

 shiftOut(dataPin, clockPin, dataS);

 digitalWrite(latchPin, 1); // Stop listening

 }

 pulseglow = fabs(255 * (sin((3.1415)*(((double)T_msec)/200))));

 // NOTE: The function above creates a sinusoidal PWM with an amplitude of

255, period of 2 seconds,

 // and the absolute value gives it the "bouncing" effect.

 ledcWrite(1,pulseglow);

 if (SecondPassed == true)

 {

 Serial.print(T_h_tens);

 Serial.print(T_h_ones);

 Serial.print(":");

 Serial.print(T_m_tens);

 Serial.print(T_m_ones);

 Serial.print(":");

 Serial.print(T_s_tens);

 Serial.println(T_s_ones);

 }

 }

 //if (T_s_ones <= 5)

 // digitalWrite(33,HIGH);

 //else if (T_s_ones > 5)

 // digitalWrite(33,LOW);

//If divergence mode is currently active (at the top of the hour)

 if (OpMode == 2)

 {

57

 if (EstablishSongStart == false)

 {

 Serial.println("Song Started.");

 SongStart = currenttime;

 EstablishSongStart = true;

 NextNote = 0;

 SongTime = 0;

 ActiveNote = 0;

 digitalWrite(divPin, 1);

 }

 SongTime = currenttime - SongStart - 1000; // Get

current song time

 if (SongTime > SongStart+GOS_duration[ActiveNote]) // If it's

time to play the note,

 {

 ledcWriteTone(2,GOS_highnote[ActiveNote]); //

write the note HZ value to the channel,

 ledcWrite(2,255);

 // then write to the buzzer pin.

 ActiveNote += 1;

 // Increment to the next note

 }

 if (ActiveNote > 14)

 // If we're at note fourteen

 {

 SongEnd = true;

 // the song is over

 Serial.println("Song ended.");

 }

 if (SongEnd == true)

 // and if the song is over,

 {

 EstablishSongStart = false;

 // let it play again

 SongEnd = false;

 // and make sure the song isn't over at the start

 OpMode = 1;

 // Go back to the clock

 ActiveNote = 0;

 NextNote = 0;

 ledcWrite(2,0);

 // Make sure sound is off

 digitalWrite(divPin, 0);

 }

 if (MSPassed == true)

 {

 dataH = GetBinary_ByteForm(DivMode_HT[DivNumber],

DivMode_HO[DivNumber]);

 dataM = GetBinary_ByteForm(DivMode_MT[DivNumber],

DivMode_MO[DivNumber]);

 dataS = GetBinary_ByteForm(DivMode_ST[DivNumber],

DivMode_SO[DivNumber]);

 for (int j = 0; j < 1; j++)

 {

 digitalWrite(latchPin, 0); // Start

listening

 shiftOut(dataPin, clockPin, dataH);

 shiftOut(dataPin, clockPin, dataM);

 shiftOut(dataPin, clockPin, dataS);

58

 digitalWrite(latchPin, 1); // Stop

listening

 }

 Serial.print(DivMode_HT[DivNumber]);

 Serial.print(".");

 Serial.print(DivMode_HO[DivNumber]);

 Serial.print(DivMode_MT[DivNumber]);

 Serial.print(DivMode_MO[DivNumber]);

 Serial.print(DivMode_ST[DivNumber]);

 Serial.println(DivMode_SO[DivNumber]);

 if (DivNumber >= 19)

 DivNumber = 19;

 else

 DivNumber += 1;

 }

 }

}

//==

===|

//===================================[FUNCTIONS

]=======================================|

//==

===|

byte GetBinary_ByteForm(int Ones, int Tens) //

Converts ones and tens place integers to 1 byte;

{

 // binary form joining both nybbles together so

 byte RB = (byte) Ones;

 // we can pass a single byte into the 74HC595 for each

 byte LB = (byte) Tens;

 // of the hours, minutes, and seconds place

 byte ByteForm = RB + (LB<<4);

 return ByteForm;

}

void DisplayNumbers()

{

}

void shiftOut(int myDataPin, int myClockPin, byte myDataOut) {

 // This shifts 8 bits out MSB first,

 //on the rising edge of the clock,

 //clock idles low

 //internal function setup

 int i=0;

 int pinState;

 pinMode(myClockPin, OUTPUT);

 pinMode(myDataPin, OUTPUT);

 //clear everything out just in case to

 //prepare shift register for bit shifting

 digitalWrite(myDataPin, 0);

 digitalWrite(myClockPin, 0);

59

 //for each bit in the byte myDataOut

 //NOTICE THAT WE ARE COUNTING DOWN in our for loop

 //This means that %00000001 or "1" will go through such

 //that it will be pin Q0 that lights.

 for (i=7; i>=0; i--) {

 digitalWrite(myClockPin, 0);

 //if the value passed to myDataOut and a bitmask result

 // true then... so if we are at i=6 and our value is

 // %11010100 it would the code compares it to %01000000

 // and proceeds to set pinState to 1.

 if (myDataOut & (1<<i)) {

 pinState= 1;

 }

 else {

 pinState= 0;

 }

 //Sets the pin to HIGH or LOW depending on pinState

 digitalWrite(myDataPin, pinState);

 //register shifts bits on upstroke of clock pin

 digitalWrite(myClockPin, 1);

 //zero the data pin after shift to prevent bleed through

 digitalWrite(myDataPin, 0);

 }

 //stop shifting

 digitalWrite(myClockPin, 0);

}

//==

===|

//===================================[RESOURCES

]=======================================|

//==

===|

/*

 * Tom Titor (4Chan /a/ board) website and schematic:

 * http://www.mindspring.com/~tomtitor/index.html

 *

 * Adafruit ESP32 HUZZAH32 Pinout diagram:

 * https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-

feather.pdf?timestamp=1579493965

 *

 * Autononymous main page (further resources from me):

 * https://autononymous.github.io/index.html

 *

 * Music note frequencies (to compose your own songs):

 * https://pages.mtu.edu/~suits/notefreqs.html

 *

 */

// El Psy Kongroo.

60

Appendix E: Note-To-Frequency Lookup Table.

Note
Freq
[Hz]

Wave
[cm]

Note
Freq
[Hz]

Wave
[cm]

Note
Freq
[Hz]

Wave
[cm]

C0 16.35 2109.89 C3 130.81 263.74 C6 1046.50 32.97

C#0/Db0 17.32 1991.47 C#3/Db3 138.59 248.93 C#6/Db6 1108.73 31.12

D0 18.35 1879.69 D3 146.83 234.96 D6 1174.66 29.37

D#0/Eb0 19.45 1774.20 D#3/Eb3 155.56 221.77 D#6/Eb6 1244.51 27.72

E0 20.60 1674.62 E3 164.81 209.33 E6 1318.51 26.17

F0 21.83 1580.63 F3 174.61 197.58 F6 1396.91 24.70

F#0/Gb0 23.12 1491.91 F#3/Gb3 185.00 186.49 F#6/Gb6 1479.98 23.31

G0 24.50 1408.18 G3 196.00 176.02 G6 1567.98 22.00

G#0/Ab0 25.96 1329.14 G#3/Ab3 207.65 166.14 G#6/Ab6 1661.22 20.77

A0 27.50 1254.55 A3 220.00 156.82 A6 1760.00 19.60

A#0/Bb0 29.14 1184.13 A#3/Bb3 233.08 148.02 A#6/Bb6 1864.66 18.50

B0 30.87 1117.67 B3 246.94 139.71 B6 1975.53 17.46

C1 32.70 1054.94 C4 261.63 131.87 C7 2093.00 16.48

C#1/Db1 34.65 995.73 C#4/Db4 277.18 124.47 C#7/Db7 2217.46 15.56

D1 36.71 939.85 D4 293.66 117.48 D7 2349.32 14.69

D#1/Eb1 38.89 887.10 D#4/Eb4 311.13 110.89 D#7/Eb7 2489.02 13.86

E1 41.20 837.31 E4 329.63 104.66 E7 2637.02 13.08

F1 43.65 790.31 F4 349.23 98.79 F7 2793.83 12.35

F#1/Gb1 46.25 745.96 F#4/Gb4 369.99 93.24 F#7/Gb7 2959.96 11.66

G1 49.00 704.09 G4 392.00 88.01 G7 3135.96 11.00

G#1/Ab1 51.91 664.57 G#4/Ab4 415.30 83.07 G#7/Ab7 3322.44 10.38

A1 55.00 627.27 A4 440.00 78.41 A7 3520.00 9.80

A#1/Bb1 58.27 592.07 A#4/Bb4 466.16 74.01 A#7/Bb7 3729.31 9.25

B1 61.74 558.84 B4 493.88 69.85 B7 3951.07 8.73

C2 65.41 527.47 C5 523.25 65.93 C8 4186.01 8.24

C#2/Db2 69.30 497.87 C#5/Db5 554.37 62.23 C#8/Db8 4434.92 7.78

D2 73.42 469.92 D5 587.33 58.74 D8 4698.63 7.34

D#2/Eb2 77.78 443.55 D#5/Eb5 622.25 55.44 D#8/Eb8 4978.03 6.93

E2 82.41 418.65 E5 659.25 52.33 E8 5274.04 6.54

F2 87.31 395.16 F5 698.46 49.39 F8 5587.65 6.17

F#2/Gb2 92.50 372.98 F#5/Gb5 739.99 46.62 F#8/Gb8 5919.91 5.83

G2 98.00 352.04 G5 783.99 44.01 G8 6271.93 5.50

G#2/Ab2 103.83 332.29 G#5/Ab5 830.61 41.54 G#8/Ab8 6644.88 5.19

A2 110.00 313.64 A5 880.00 39.20 A8 7040.00 4.90

A#2/Bb2 116.54 296.03 A#5/Bb5 932.33 37.00 A#8/Bb8 7458.62 4.63

B2 123.47 279.42 B5 987.77 34.93 B8 7902.13 4.37

Table adapted from pages-mtu.edu [8].

61

Appendix F: Legal Disclaimer

DISCLAIMER

All material covered in this document, attached files, and included print assets is for informational

purposes only. I take no responsibility for what you do with this knowledge. I can not be held

responsible for any property or medical damages caused by the items described in this document. I

advise you to check local laws and consult professional electricians/contractors for any project

involving electricity, construction or assembly.

The DIY and tutorial material taught throughout this publication and attached materials are solely

for informational purposes. By taking any information or educational material from this publication

and attached materials, you assume any and all risks for the material covered. You agree to

indemnify, hold harmless, and defend Ryan M. Kissinger from any and all claims and damages as a

result of any and all of the information covered.

By taking and/or using any informational resources from Ryan M. Kissinger, you agree that you will

use the information in this document in a safe and legal manner, consistent with any and all

applicable laws, safety rules, and common sense. You further agree that you will take such steps as

may be reasonably necessary or required by law to keep any information out of the hands of minors

and immature and/or unqualified individuals.

You must accept that you and you alone are accountable for your safety, as well as the safety of others

in any endeavor. While the material in this document and attached sources is provided in hopes that

you construct your own project, you are ultimately responsible for verifying its applicability and

accuracy to your project. You are completely responsible for knowing your limitations of knowledge

and experience. If you do any work with high voltage power such as 120 or 240 VAC power wiring,

you should consult a Licensed Electrician.

Some illustrations do not depict safety precautions or necessary equipment, in order to show the

project steps as clearly as possible. These projects are not intended for use by individuals under the

age of 18. Use of these instructions and suggestions is at your own risk. Ryan M. Kissinger disclaims

all responsibility for any resulting damage, injury, or expense. It is your responsibility to make sure

that your activities comply with any and all applicable laws.

By proceeding in the manufacturing or assembly of this project, you agree that you have read and

understood this Disclaimer.

62

Works Cited

[1] J. Boos, "The Nixie tube story," in IEEE Spectrum, vol. 55, no. 7, pp. 36-41, July 2018.

[2] G. Zorpette, "New life for Nixies [in digital clocks]," in IEEE Spectrum, vol. 39, no. 6, pp.

44-49, June 2002.

[3] 74HC595 Product Datasheet. Nexperia B.V., 2017, p. 1-5, 16-18 [Online]. Available:

https://assets.nexperia.com/documents/data-sheet/74HC_HCT595.pdf. [Accessed: 12-

February-2020]

[4] National TTL Databook. National Semiconductor Corp., 1976, p. 1-4 [Online]. Available:

https://datasheetspdf.com/parts/DM5441A.pdf?id=866041. [Accessed: 12-February-2020]

[5] ESP32 Series Datasheet. EspressIf Systems, 2019, p 1-4 [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

[Accessed: 12-February-2020]

[6] Adafruit HUZZAH32 ESP32 Feather. Adafruit, 2019, p1-4 [Online]. Available:

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-

feather.pdf?timestamp=1581553421. [Accessed: 12-February-2020]

[7] Zeyuan. Yan, NCH6100HV Datasheet. p 1-4 [Online]. Available:

https://elty.pl/pl/p/file/ca247d15f86f21efcaf90591a05a01f2/NIXIE-Power-Supply-

Datasheet-EN-v1.0.0.pdf. [Accessed: 13-February-2020]

[8] B. H. Suits, Physics of Music - Notes, 1998. [Online]. Available:

https://pages.mtu.edu/~suits/notefreqs.html. [Accessed: 19-Feb-2020].

[9] C. Maw and T. Igoe, Arduino ShiftOut Reference, 25-Oct-2006. [Online]. Available:

https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/. [Accessed:

19-Feb-2020].

https://assets.nexperia.com/documents/data-sheet/74HC_HCT595.pdf
https://elty.pl/pl/p/file/ca247d15f86f21efcaf90591a05a01f2/NIXIE-Power-Supply-Datasheet-EN-v1.0.0.pdf
https://elty.pl/pl/p/file/ca247d15f86f21efcaf90591a05a01f2/NIXIE-Power-Supply-Datasheet-EN-v1.0.0.pdf

	Nixie Tube Clock Design
	ABSTRACT
	0. Introduction
	1. Initial Considerations and Bill of Materials
	1.1. SN74HC595 Bit-Shift Register
	1.2. K155ID1 Binary-to-BCD Chip
	1.3. Using Both ICs Together
	1.4. ESP32 Adafruit Featherboard
	1.5. NCH6100HV Voltage Step-Up

	2. Manufacturing
	2.1. Engineering Drawings
	2.2. Manufacturing

	3. Circuit Schematics
	3.1. Power Considerations
	3.2. PCB Separation
	3.3. IC Connections
	3.4. LED Connections
	3.5. ESP32 Connections
	3.6. PCB Design Considerations

	4. Program Code
	4.1. Table of Variables
	4.2. Setup/Initialization
	4.3. Time Control
	4.4. Defining a Proper Button Press
	4.5. HX711 and K155ID1 Interface: Program Side
	4.6. Time-Responsive LEDs

	5. Additional Features
	5.1. Music

	APPENDICES.
	Appendix A: Interfacing with Sloeber
	Appendix B: Engineering Drawings
	Appendix C: Electrical Schematics
	Appendix D: Full Program Code
	Appendix E: Note-To-Frequency Lookup Table.
	Appendix F: Legal Disclaimer

	DISCLAIMER
	Works Cited

